## MEMORANDUM

| То:      | Catherine Lauria<br>Chief School Business Officer<br>West Northfield School District 31  |
|----------|------------------------------------------------------------------------------------------|
| From:    | Tim Sjogren, P.E., PTOE<br>Kurt Facknitz, E.I.                                           |
| Date:    | February 25, 2019                                                                        |
| Subject: | Transportation Review and Recommendations<br>Winkelman Elementary School<br>Glenview, IL |

# **EXECUTIVE SUMMARY**

Kimley-Horn and Associates, Inc. (Kimley-Horn) was retained by West Northfield School District 31 to review access, parking, and circulation conditions at Winkelman Elementary School in Glenview, Illinois. Based on a review of existing conditions, Kimley-Horn identified short- and long-term recommendations to enhance campus access and safety for students, parents, faculty, and staff.

In the short-term, parking lot striping modifications are recommended to increase the parking supply and enhance ADA accessibility. Potential changes to queue operations are also recommended in order to improve the capacity of the student pick-up/drop-off area on the south side of the building. These short-term improvements require limited modifications to existing campus infrastructure and were identified for potential implementation during the second half of the 2018/2019 school year.

In the long-term, modifications to the current dismissal process are recommended to increase efficiency, minimize student loading time, and reduce required faculty/staff levels. In addition to these changes, the existing sidewalk along the south side of the building should be widened in order to extend the designated student pick-up/drop-off area and increase the number of vehicles loading simultaneously. A second queue lane is recommended along the south side of the building in order to increase onsite capacity and minimize spillback to Landwehr Road. Modifications to the north parking lot (Lot B) are recommended to further increase the parking supply. Off-site improvements are also recommended, including a southbound left-turn lane and a northbound right-turn lane on Landwehr Road at South Winkelman Access.

## INTRODUCTION

Winkelman Elementary School is located east of Landwehr Road and north of Lake Avenue, immediately north of Glenbrook Hospital. Student enrollment ranges from Pre-K to Grade 5. Access to Winkelman Elementary School is provided along Landwehr Road via two full-access driveways. The north driveway (North Winkelman Access) provides access for buses and passenger vehicles; the south driveway (South Winkelman Access) provides access for passenger vehicles only. The primary faculty/staff and visitor parking lot (Lot A) is located west of the school and is accessed via North Winkelman Access and South

Winkelman Access. Additional parking is provided north of the school (Lot B). A dedicated bus pick-up/dropoff area is also located in Lot B. Bus access to the site is provided by North Winkelman Access. The designated student pick-up/drop-off area is located on the south side of the school and is accessed via South Winkelman Access.

This study was conducted in order to review current transportation operations at the Winkelman Elementary School campus. This memorandum documents the study methodology, summarizes data collected, highlights key findings, and outlines both short-term and long-term recommendations to improve these operations at the site.

# DATA COLLECTION AND ANALYSIS

Kimley-Horn performed observations at Winkelman Elementary School to review existing traffic conditions and operational characteristics. A summary of key observations, data collection, and analyses performed to inform recommendations is outlined below.

#### **Key Observations**

Kimley-Horn conducted observations over a 9-hour period (7:00AM - 4:00PM) on a typical school day in December 2018. A summary of key observations is provided below, with further detail and accompanying photographs provided in **Exhibit 1**.

- Morning Arrival Conditions During the morning arrival period, staggered student arrivals were
  observed from 7:40AM to 8:15AM. Arrival queues were generally accommodated onsite for the
  initial portion of the drop-off period. A higher concentration of vehicles was observed immediately
  prior to the first morning bell, with a maximum queue observed after 8:00AM and prior to the second
  bell at 8:10AM. During this period, the maximum observed queue was 50 vehicles, which exceeded
  onsite storage and extended onto Landwehr Road. The average time spent in the queue was
  approximately 3 minutes, and the average drop-off time was 16 seconds.
- Afternoon Dismissal Conditions During afternoon dismissal, vehicles were observed entering the campus for pick-up beginning around 1:00PM. Approximately 15 minutes prior to the dismissal bell at 2:40PM, the onsite queue storage area was fully occupied with approximately 43 vehicles. The maximum observed queue was 53 vehicles, which extended south on Landwehr Road to the Glenbrook Hospital access driveway. Though Landwehr Road is striped to provide a single northbound travel lane, vehicles were observed utilizing the paved shoulder as a de facto right-turn lane to avoid blocking northbound traffic. The overall average time spent in the queue was 29 minutes; following the dismissal bell, the average time spent in the queue was 12 minutes. The initial queue cleared in approximately 21 minutes, followed by more staggered pick-up activity with reduced queue clearance times. The average student loading time was 30 seconds.
- Parking Utilization During the observation period, parking utilization consistently exceeded the supply. Vehicles were observed in non-designated parking areas and ADA accessible drive aisles. In addition, illegal use of ADA spaces was observed. Parking utilization was particularly high during the afternoon dismissal period.
- **Pick-Up/Drop-Off Space** The pick-up/drop-off area located south of the school currently accommodates approximately four to five vehicles. The length of the pick-up/drop-off area limits the number of students loading/unloading simultaneously.



# Kimley»Horn

## **EXHIBIT 1** SUMMARY OF EXISTING CONDITIONS

- Lot A Pick-Up/Drop-Off Activity During morning arrival, vehicles utilized non-designated parking areas in Lot A for student drop-off activity. Vehicles were observed idling in parking lot drive aisles and ADA spaces, with students exiting vehicles and walking through the lot to reach the school entrance, often in conflict with other vehicles and parking maneuvers. During the afternoon dismissal period, several vehicles arrived prior to closure of Lot A and used the parking lot as a student pick-up area.
- Lot B ADA Accessibility Lot B includes two ADA accessible spaces. However, these spaces are not the closest spaces to the nearest building entrance, and no ADA route appears to be provided.
- Lot B Parking Vehicle parking in Lot B is inefficient; the existing layout creates a large amount of unutilized space between vehicles. The parking spaces in the center of Lot B are oversized; the existing spaces are approximately 20'x30', whereas a standard angled parking space is typically 9'x20'. Furthermore, due to the presence of old pavement markings that have not been completely removed, parked vehicles often encroach into the designated bus lane, potentially impacting bus circulation.

#### **Traffic and Pedestrian Counts**

To determine current levels of vehicle, bus, pedestrian, and bicycle activity within the study area, weekday traffic counts were performed during a typical weekday in January 2019 when school was in session. The traffic counts were conducted from 7:00AM - 4:00PM at the following intersections:

- Landwehr Road/North Winkelman Access
- Landwehr Road/South Winkelman Access
- North Winkelman Access/Lot A South Access
- South Winkelman Access/Lot A North Access

A summary of the existing peak hour traffic volumes is presented in **Exhibit 2**. The morning arrival peak hour was from 7:15AM – 8:15AM, and the afternoon dismissal peak hour was from 2:30PM – 3:30PM.

#### **Traffic Volume Review**

Based on field observations and discussions with school administration, the intersection of Landwehr Road and South Winkelman Access is placed under manual control from 7:45AM – 8:15AM during the student arrival period, and from 2:30PM – 3:00PM during the dismissal period. During this time, an off-duty Cook County Police Officer directs traffic at the intersection. This manual control allows exiting (westbound) vehicles to be released in platoons, which prevents these vehicles from queuing on campus and obstructing the designated pick-up/drop-off area. Inbound vehicles traveling southbound on Landwehr Road are generally given priority, preventing vehicles from impeding the southbound through movement for significant periods of time. Despite this, the volume of inbound vehicles, particularly in the morning arrival period, results in significant delays and queuing on southbound Landwehr Road.

Capacity analyses were performed for the intersections of Landwehr Road/North Winkelman Access and Landwehr Road/South Winkelman Access in order to evaluate existing operations. The analysis demonstrates that intersection operation is poor during peak arrival and dismissal periods, with through movements restricted by turning vehicles, particularly at the Landwehr Road/South Winkelman Access intersection. The results are consistent with observations of field operations. Intersection capacity analyses and detailed traffic count data are provided in the appendix.



Kimley » Horn

# EXHIBIT 2 EXISTING PEAK HOUR TRAFFIC VOLUMES

Based on a review of the count data, traffic volumes entering the campus were significantly higher during the morning arrival period as compared to the afternoon dismissal period. Based on conversations with school administration, it is likely that this is attributable to on-campus after-school programs which reduce the number of students leaving campus with the dismissal bell. However, the difference between arrival and dismissal volumes also suggests potential use of alternate transportation options (e.g., bus, carpool, etc.) during the dismissal period to avoid the afternoon queues or constrained parking conditions. Improvements to the campus transportation infrastructure to increase queue capacity and enhance the efficiency of student pick-up may encourage increased activity during the afternoon peak hour.

#### **Turn Lane Warrant Analysis**

Based on the traffic counts and a review of existing queue conditions, turn lane warrants were evaluated for Landwehr Road at North and South Winkelman Access. Turn lane warrants were conducted using guidelines in the Illinois Department of Transportation (IDOT) *Bureau of Design and Environment Manual (BDE)* manual. Based on morning peak hour traffic volumes, a southbound left-turn lane is warranted on Landwehr Road at South Winkelman Access. Installation of a southbound left-turn lane will allow southbound through vehicles to bypass vehicles queueing to turn left onto South Winkelman Access, reducing southbound delays and improving operation of the intersection.

Similarly, based on morning peak hour traffic volumes, a northbound right-turn lane is warranted on Landwehr Road at South Winkelman Access. Installation of a northbound right-turn lane will allow northbound through vehicles to bypass vehicles in the right turn lane when queues extend onto Landwehr Road. Installation of a right-turn lane will formalize the observed use of the intersection during morning arrival and afternoon dismissal, during which the existing northbound shoulder was utilized as a de facto right turn lane when queues extended onto Landwehr Road.

A future capacity analysis of the intersection with the inclusion of southbound left- and northbound rightturn lanes (summarized in the attached appendix) was performed. The analysis demonstrates that the inclusion of turn lanes improves the operation of the intersection, reducing both vehicle delay and queue length. Installation of turn lanes on Landwehr Road will require coordination with the Cook County Department of Transportation and Highways. A copy of the turn lane warrant analysis is provided in the appendix.

#### Parking Utilization Counts

Lot A currently provides a total of 98 parking spaces, including 85 standard parking spaces, 4 visitor spaces, 4 spaces for traveling faculty, 4 ADA spaces, and 1 space with a 15-minute limit. Lot B currently provides 25 total parking spaces, with 23 standard spaces and 2 ADA spaces.

During the observation period, Kimley-Horn recorded the number of vehicles parked within Lot A and Lot B hourly, from 7:00AM to 4:00PM. During peak arrival and dismissal periods, counts were conducted every 15 minutes to capture the high-turnover parking conditions. Throughout the count period, parking utilization was tabulated for each parking space designation (e.g., standard, ADA, visitor, faculty, 15-minute).

The parking utilization data (summarized in the attached appendix) demonstrates that the number of parked vehicles in both Lot A and Lot B consistently exceeded the number of striped parking spaces provided in each lot. Overall parking utilization was 100 percent or greater for 9 of the 17 count periods. The highest parking utilization occurred during the afternoon dismissal (2:45PM), with 145 vehicles parked on campus. With only 123 striped spaces provided onsite, peak parking utilization exceeded supply. During this period, vehicles were observed parked in No Parking areas and drive aisles.

# SUMMARY AND RECOMMENDATIONS

Based on key observations, data collection, and analyses, Kimley-Horn has developed recommended improvements to address access, circulation, and parking challenges. These include recommendations for short-term improvements that can be implemented with limited modifications to existing campus infrastructure, as well as long-term recommendations which may require more significant investment in infrastructure improvements.

#### **Short-Term Recommendations**

Provided below are short-term recommendations for campus transportation improvements. These short-term recommendations are also summarized in **Exhibit 3.** These recommendations should be considered for implementation during the second half of the 2018/2019 school year.

| Recommendation                                                                                                                                                                                                                                          | Benefit                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Convert the existing No Parking area in Lot A into two (2) additional standard parking spaces.                                                                                                                                                          | Formalizes existing use and increase Lot A parking supply by two (2) spaces. <sup>1</sup>                                                                                                                    |
| Re-stripe the center parking spaces of Lot B and convert the current oversized spaces to 60-degree, 9' x 20' angled parking.                                                                                                                            | Enhances visibility of pavement markings and increase<br>Lot B parking supply by nine (9) spaces. <sup>1</sup><br>Reduces vehicle overhang into the designated bus<br>lane / minimize impacts to bus access. |
| Relocate the existing ADA spaces on the north side of Lot B to parking spaces closest to the building entrance and convert the existing ADA spaces into standard parking spaces. ADA route should be verified for compatibility with current standards. | Shortens distance between ADA spaces and school entrance in Lot B.                                                                                                                                           |
| Use cones to block the center of the turnaround area provided for the pick-up/drop-off area.                                                                                                                                                            | Increases utilization of turnaround space and reduces queue spillback onto northbound Landwehr Road.                                                                                                         |
| Install a stop sign and stop bar at southbound Lot A South Access.                                                                                                                                                                                      | Encourages exiting drivers to come to a complete stop<br>and look for oncoming traffic before turning, enhancing<br>safety at the intersection.                                                              |

<sup>1</sup> Based on the recommended additional parking, the current allotment of six (6) ADA spaces is sufficient to serve the campus.

#### Long Term Recommendations

A summary of long-term recommendations for campus transportation improvements is outlined below and depicted in **Exhibit 4.** These recommendations likely require more extensive infrastructure improvements or time and likely would be considered for implementation following the 2018/2019 school year.

| Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Benefit                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modify the current dismissal process to queue students within the school (gym or cafeteria often used) and dismiss in groups or platoons. Students would be dismissed based on a number system, with numbers distributed to students and parents at the start of the school year. Faculty/staff would monitor the vehicle queue and communicate numbers to additional faculty/staff in the gym. As matching numbers are identified, students would be dismissed from the gym in numbered order corresponding to the vehicle queue. | Increases dismissal loading efficiency by reducing the time it takes for each student to load into the appropriate vehicle.<br>Reduces faculty/staff levels required to manage dismissal period.                                                                                                |
| Expand Lot B by utilizing the available space to the south of the existing curb line. With the additional space provided in the lot, convert the center parking area into two rows of 60-degree, 9' x 20' angled parking spaces. Reconfigure the existing island to maximize parking space within Lot B.                                                                                                                                                                                                                           | Increases Lot A parking supply by approximately 37 spaces. <sup>1</sup>                                                                                                                                                                                                                         |
| Convert Lot B to faculty and staff parking only; continue to provide additional faculty and staff parking in Lot A.                                                                                                                                                                                                                                                                                                                                                                                                                | Allows a portion of Lot A to remain open for visitors and<br>traveling faculty throughout the day.<br>Limits the potential for illegal parking on campus,<br>particularly during the afternoon dismissal period.                                                                                |
| Based on existing morning peak hour traffic volumes, both a southbound left-turn lane and northbound right-turn lane are warranted on Landwehr Road at South Winkelman Access. Coordination with Cook County Department of Transportation and Highways would be required to implement off-site roadway improvements.                                                                                                                                                                                                               | Provides a dedicated northbound right-turn lane to<br>accommodate queue spillover onto Landwehr Road<br>and minimize impacts to through traffic.<br>Allows southbound through traffic to bypass left turning<br>vehicles, thereby increasing the operational efficiency<br>of the intersection. |
| Widen the sidewalk east of Lot A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minimizes the impact of vehicle overhang from parked vehicles in Lot A and provides additional space for pedestrians entering and exiting the school.                                                                                                                                           |
| Widen the sidewalk on the north side of the south pick-up/drop-off area. Alternately, or in conjunction with this recommendation, expand the personal vehicle pick-up/drop-off area to the west.                                                                                                                                                                                                                                                                                                                                   | Increases the number of vehicles that can load and<br>unload simultaneously and reduces the average time<br>and total time spent in the afternoon dismissal queues.                                                                                                                             |
| Operate a second queue lane when the pick-up queue exceeds<br>storage. The second queue lane would be a staging zone only. As the<br>first queue lane exits, the second queue lane would be directed to the<br>curbside lane for student pick-up.                                                                                                                                                                                                                                                                                  | Increases the number of vehicles that can be stored in the pick-up queue and minimizes queue spillback to Landwehr Road.                                                                                                                                                                        |

<sup>1</sup> Based on the recommended additional parking, the current allotment of six (6) ADA spaces is sufficient to serve the campus

Short-term recommendations include operational modifications and pavement striping changes only; significant infrastructure investment is not required. These improvements were identified to provide short-term impacts to access and parking challenges in the second half of the 2018/2019 school year. Many of the long-term recommendations will require modifications to existing campus infrastructure. In addition, coordination with Cook County Department of Transportation and Highways will be required to implement the recommended off-site improvements. As improvements are planned and designed, continued monitoring of campus access, circulation, and parking conditions is recommended.

Please do not hesitate to contact us with any questions related to the information in this memorandum.



Kimley»Horn

# EXHIBIT 3 SHORT-TERM SITE IMPROVEMENTS



Kimley»Horn

EXHIBIT 4 LONG-TERM SITE IMPROVEMENTS

# **APPENDIX**

Parking Utilization Summary

Left Turn Lane Warrant

Right Turn Lane Warrant

Existing Capacity Reports

Future Capacity Reports (With Left and Right Turn Lanes)

Queue Data

Traffic Count Data

# PARKING UTILIZATION SUMMARY

#### **Parking Utilization Counts**

|       |    |                                      |                       | LOT /                | 4                   |         |                   |                         | LOT              | В       |                   |
|-------|----|--------------------------------------|-----------------------|----------------------|---------------------|---------|-------------------|-------------------------|------------------|---------|-------------------|
| Time  |    | Standard<br>(85 Spaces) <sup>1</sup> | Visitor<br>(4 Spaces) | Travel<br>(4 Spaces) | 15-Min<br>(1 Space) | Illegal | ADA<br>(4 Spaces) | Standard<br>(23 Spaces) | Hampton<br>Court | Illegal | ADA<br>(2 Spaces) |
| 7:00  | AM | 8                                    | 0                     | 0                    | 0                   | 0       | 0                 | 2                       | 0                | 0       | 0                 |
| 7:45  | AM | 74                                   | 2                     | 1                    | 1                   | 0       | 0                 | 8                       | 0                | 0       | 0                 |
| 8:00  | AM | 85                                   | 4                     | 4                    | 1                   | 0       | 0                 | 17                      | 0                | 0       | 0                 |
| 8:15  | AM | 85                                   | 4                     | 4                    | 0                   | 1       | 0                 | 19                      | 0                | 3       | 0                 |
| 8:30  | AM | 85                                   | 3                     | 4                    | 1                   | 1       | 0                 | 20                      | 0                | 3       | 0                 |
| 9:00  | AM | 85                                   | 3                     | 4                    | 1                   | 1       | 0                 | 21                      | 0                | 3       | 0                 |
| 10:00 | AM | 85                                   | 3                     | 4                    | 1                   | 1       | 0                 | 21                      | 0                | 3       | 0                 |
| 11:00 | AM | 85                                   | 1                     | 4                    | 0                   | 1       | 0                 | 23                      | 0                | 3       | 0                 |
| 12:00 | PM | 80                                   | 1                     | 4                    | 0                   | 1       | 0                 | 17                      | 0                | 4       | 0                 |
| 1:00  | PM | 85                                   | 3                     | 4                    | 1                   | 1       | 0                 | 20                      | 0                | 4       | 0                 |
| 2:00  | PM | 85                                   | 4                     | 4                    | 0                   | 1       | 0                 | 20                      | 0                | 3       | 0                 |
| 2:15  | PM | 85                                   | 4                     | 4                    | 1                   | 2       | 1                 | 23                      | 0                | 11      | 0                 |
| 2:30  | PM | 85                                   | 4                     | 4                    | 1                   | 2       | 1                 | 23                      | 0                | 13      | 0                 |
| 2:45  | PM | 82                                   | 4                     | 4                    | 1                   | 2       | 3                 | 23                      | 4                | 20      | 2                 |
| 3:00  | PM | 80                                   | 3                     | 4                    | 1                   | 0       | 1                 | 20                      | 0                | 5       | 0                 |
| 3:15  | PM | 50                                   | 2                     | 1                    | 0                   | 0       | 0                 | 12                      | 0                | 5       | 0                 |
| 4:00  | PM | 22                                   | 2                     | 1                    | 0                   | 0       | 0                 | 10                      | 0                | 6       | 0                 |

<sup>1</sup>Number of spaces of each type currently provided on campus.

#### **Parking Utilization Summary**

|       |    |                     | LC                  | A TO                |                     |                     | LO                  | ТΒ                  |                     |                     | TO                  | TAL                 |                     |
|-------|----|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Time  |    | Stan                | dard                | AD                  | A                   | Stand               | dard                | AD                  | A                   | Stan                | dard                | A                   | DA                  |
|       |    | Percent<br>Occupied | Spaces<br>Available |
| 7:00  | AM | 9%                  | 86                  | 0%                  | 4                   | 9%                  | 21                  | 0%                  | 2                   | 9%                  | 107                 | 0%                  | 6                   |
| 7:45  | AM | 83%                 | 16                  | 0%                  | 4                   | 35%                 | 15                  | 0%                  | 2                   | 74%                 | 31                  | 0%                  | 6                   |
| 8:00  | AM | 100%                | 0                   | 0%                  | 4                   | 74%                 | 6                   | 0%                  | 2                   | 95%                 | 6                   | 0%                  | 6                   |
| 8:15  | AM | 100%                | 0                   | 0%                  | 4                   | 96%                 | 1                   | 0%                  | 2                   | 99%                 | 1                   | 0%                  | 6                   |
| 8:30  | AM | 100%                | 0                   | 0%                  | 4                   | 100%                | 0                   | 0%                  | 2                   | 100%                | 0                   | 0%                  | 6                   |
| 9:00  | AM | 100%                | 0                   | 0%                  | 4                   | 104%                | (1)                 | 0%                  | 2                   | 101%                | (1)                 | 0%                  | 6                   |
| 10:00 | AM | 100%                | 0                   | 0%                  | 4                   | 104%                | (1)                 | 0%                  | 2                   | 101%                | (1)                 | 0%                  | 6                   |
| 11:00 | AM | 97%                 | 3                   | 0%                  | 4                   | 113%                | (3)                 | 0%                  | 2                   | 100%                | 0                   | 0%                  | 6                   |
| 12:00 | PM | 91%                 | 8                   | 0%                  | 4                   | 91%                 | 2                   | 0%                  | 2                   | 91%                 | 10                  | 0%                  | 6                   |
| 1:00  | PM | 100%                | 0                   | 0%                  | 4                   | 104%                | (1)                 | 0%                  | 2                   | 101%                | (1)                 | 0%                  | 6                   |
| 2:00  | PM | 100%                | 0                   | 0%                  | 4                   | 100%                | 0                   | 0%                  | 2                   | 100%                | 0                   | 0%                  | 6                   |
| 2:15  | PM | 102%                | (2)                 | 25%                 | 3                   | 148%                | (11)                | 0%                  | 2                   | 111%                | (13)                | 17%                 | 5                   |
| 2:30  | PM | 102%                | (2)                 | 25%                 | 3                   | 157%                | (13)                | 0%                  | 2                   | 113%                | (15)                | 17%                 | 5                   |
| 2:45  | PM | 99%                 | 1                   | 50%                 | 1                   | 204%                | (24)                | 100%                | 0                   | 120%                | (23)                | 83%                 | 1                   |
| 3:00  | PM | 94%                 | 6                   | 25%                 | 3                   | 109%                | (2)                 | 0%                  | 2                   | 97%                 | 4                   | 17%                 | 5                   |
| 3:15  | PM | 56%                 | 41                  | 0%                  | 4                   | 74%                 | 6                   | 0%                  | 2                   | 60%                 | 47                  | 0%                  | 6                   |
| 4:00  | PM | 27%                 | 69                  | 0%                  | 4                   | 70%                 | 7                   | 0%                  | 2                   | 35%                 | 76                  | 0%                  | 6                   |

LEFT TURN LANE WARRANT



36-3.13

Figure 36-3.G

**RIGHT TURN LANE WARRANT** 



Note: For highways with a design speed below 50 mph (80 km/hr), with a DHV in one direction of less than 300, and where right turns are greater than 40, an adjustment should be used. To read the vertical axis of the chart, subtract 20 from the actual number of right turns.

#### Example

| Given: | Design Speed           | = | 35 mph (60 km/hr) |
|--------|------------------------|---|-------------------|
|        | DHV (in one direction) | = | 250 vph           |
|        | Right Turns            | = | 100 vph           |

- Problem: Determine if a right-turn lane is warranted.
- Solution: To read the vertical axis, use 100 20 = 80 vph. The figure indicates that rightturn lane is not necessary, unless other factors (e.g., high crash rate) indicate a lane is needed.

#### GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS

Figure 36-3.A

**EXISTING CAPACITY REPORTS** 

|                         | -           | •           | <b>†</b> | 1     | · `+        | ↓ I   |
|-------------------------|-------------|-------------|----------|-------|-------------|-------|
| Lane Group              | WBL         | WBR         | NBT      | NBR   | SBL         | SBT   |
| Lane Configurations     | 5           | 1           | t.       |       |             | 4     |
| Traffic Volume (vph)    | 90          | 85          | 440      | 140   | 85          | 625   |
| Future Volume (vph)     | 90          | 85          | 440      | 140   | 85          | 625   |
| Ideal Flow (vphpl)      | 1900        | 1900        | 1900     | 1900  | 1900        | 1900  |
| Lane Util. Factor       | 1.00        | 1.00        | 1.00     | 1.00  | 1.00        | 1.00  |
| Frt                     |             | 0.850       | 0.967    |       |             |       |
| Flt Protected           | 0.950       |             |          |       |             | 0.994 |
| Satd, Flow (prot)       | 1770        | 1583        | 1801     | 0     | 0           | 1852  |
| Flt Permitted           | 0.950       |             |          |       | -           | 0.685 |
| Satd, Flow (perm)       | 1770        | 1583        | 1801     | 0     | 0           | 1276  |
| Right Turn on Red       |             | Yes         |          | Yes   | •           |       |
| Satd Flow (RTOR)        |             | 77          | 52       | 100   |             |       |
| Link Speed (mph)        | 30          |             | 30       |       |             | 30    |
| Link Distance (ff)      | 151         |             | 191      |       |             | 249   |
| Travel Time (s)         | 34          |             | 43       |       |             | 57    |
| Peak Hour Factor        | 0.4<br>0.83 | 0.83        | 0.83     | 0.83  | 0.83        | 0.83  |
| Adi Flow (vph)          | 100         | 100         | 6.00     | 160   | 102         | 752   |
| Shared Lane Troffic (%) | 100         | 102         | 550      | 109   | 102         | 100   |
| Lano Group Flow (vich)  | 100         | 102         | 600      | 0     | 0           | 055   |
| Lane Group Flow (Vpn)   | 108<br>No   | IUZ         | 099      | U     | U           | 000   |
| Long Alignment          | INO<br>Loft | NU<br>Diabt | INO      | Diabt | INO<br>Loft | INO   |
| Lane Alignment          | Leit        | Right       | Len      | Right | Leit        | Leit  |
| ivieulan wiuth(II)      | 12          |             | 0        |       |             | 0     |
|                         | 0           |             | 0        |       |             | 10    |
| Crosswalk Width(ft)     | 16          |             | 16       |       |             | 16    |
| I wo way Left Turn Lane | 4.00        | 4 00        | 4.00     | 4 00  | 4 00        | 4.00  |
| Headway Factor          | 1.00        | 1.00        | 1.00     | 1.00  | 1.00        | 1.00  |
| Turning Speed (mph)     | 15          | 9           | -        | 9     | 15          |       |
| Number of Detectors     | 1           | 1           | 2        |       | 1           | 2     |
| Detector Template       | Left        | Right       | Thru     |       | Left        | Thru  |
| Leading Detector (ft)   | 20          | 20          | 100      |       | 20          | 100   |
| Trailing Detector (ft)  | 0           | 0           | 0        |       | 0           | 0     |
| Detector 1 Position(ft) | 0           | 0           | 0        |       | 0           | 0     |
| Detector 1 Size(ft)     | 20          | 20          | 6        |       | 20          | 6     |
| Detector 1 Type         | CI+Ex       | CI+Ex       | Cl+Ex    |       | CI+Ex       | CI+Ex |
| Detector 1 Channel      |             |             |          |       |             |       |
| Detector 1 Extend (s)   | 0.0         | 0.0         | 0.0      |       | 0.0         | 0.0   |
| Detector 1 Queue (s)    | 0.0         | 0.0         | 0.0      |       | 0.0         | 0.0   |
| Detector 1 Delay (s)    | 0.0         | 0.0         | 0.0      |       | 0.0         | 0.0   |
| Detector 2 Position(ft) |             |             | 94       |       |             | 94    |
| Detector 2 Size(ft)     |             |             | 6        |       |             | 6     |
| Detector 2 Type         |             |             | Cl+Ex    |       |             | CI+Ex |
| Detector 2 Channel      |             |             |          |       |             |       |
| Detector 2 Extend (s)   |             |             | 0.0      |       |             | 0.0   |
| Turn Type               | Prot        | pt+ov       | NA       |       | pm+pt       | NA    |
| Protected Phases        | 4           | 4 5         | 6        |       | 5           | 2     |
| Permitted Phases        |             |             | Ű        |       | 2           | -     |
| Detector Phase          | 4           | 4 5         | 6        |       | 5           | 2     |
| Switch Phase            | -7          | τU          | v        |       | 0           | L     |
| Minimum Initial (s)     | 5.0         |             | 5.0      |       | 50          | 50    |
| (S)                     | 5.0         |             | 5.0      |       | 5.0         | 5.0   |

Eixsting (2019) Traffic Volumes

Synchro 10 Report

|                              | 4           | *    | 1     | 1   | 1           | Ŧ          |    |
|------------------------------|-------------|------|-------|-----|-------------|------------|----|
| Lane Group                   | WBL         | WBR  | NBT   | NBR | SBL         | SBT        |    |
| Minimum Split (s)            | 10.0        |      | 10.0  |     | 9.0         | 15.5       |    |
| Total Split (s)              | 10.0        |      | 11.0  |     | 9.0         | 20.0       |    |
| Total Split (%)              | 33.3%       |      | 36.7% |     | 30.0%       | 66.7%      |    |
| Maximum Green (s)            | 7.0         |      | 8.0   |     | 6.0         | 17.0       |    |
| Yellow Time (s)              | 2.0         |      | 2.0   |     | 2.0         | 2.0        |    |
| All-Red Time (s)             | 1.0         |      | 1.0   |     | 1.0         | 1.0        |    |
| Lost Time Adjust (s)         | 0.0         |      | 0.0   |     |             | 0.0        |    |
| Total Lost Time (s)          | 3.0         |      | 3.0   |     |             | 3.0        |    |
| Lead/Lag                     |             |      | Lead  |     | Lag         |            |    |
| Lead-Lag Optimize?           |             |      | Yes   |     | Yes         |            |    |
| Vehicle Extension (s)        | 3.0         |      | 3.0   |     | 3.0         | 3.0        |    |
| Recall Mode                  | None        |      | None  |     | Max         | None       |    |
| Act Effct Green (s)          | 6.6         | 15.9 | 8.2   |     |             | 17.5       |    |
| Actuated g/C Ratio           | 0.24        | 0.57 | 0.29  |     |             | 0.63       |    |
| v/c Ratio                    | 0.26        | 0.11 | 1.23  |     |             | 0.92       |    |
| Control Delay                | 11.2        | 1.9  | 139.2 |     |             | 29.0       |    |
| Queue Delay                  | 0.0         | 0.0  | 0.0   |     |             | 0.0        |    |
| Total Delay                  | 11.2        | 1.9  | 139.2 |     |             | 29.0       |    |
| LOS                          | В           | А    | F     |     |             | С          |    |
| Approach Delay               | 6.7         |      | 139.2 |     |             | 29.0       |    |
| Approach LOS                 | А           |      | F     |     |             | С          |    |
| Intersection Summary         |             |      |       |     |             |            |    |
| Area Type:                   | Other       |      |       |     |             |            |    |
| Cycle Length: 30             |             |      |       |     |             |            |    |
| Actuated Cycle Length: 27    | .9          |      |       |     |             |            |    |
| Natural Cycle: 55            |             |      |       |     |             |            |    |
| Control Type: Semi Act-Un    | coord       |      |       |     |             |            |    |
| Maximum v/c Ratio: 1.23      |             |      |       |     |             |            |    |
| Intersection Signal Delay: 7 | 70.0        |      |       | Ir  | ntersection | n LOS: E   |    |
| Intersection Capacity Utiliz | ation 84.3% |      |       | 10  | CU Level    | of Service | еE |
| Analysis Period (min) 15     |             |      |       |     |             |            |    |

| Splits and Phases: | 3: Landwehr & South Winkelman Access |
|--------------------|--------------------------------------|
|--------------------|--------------------------------------|



|                                   | -          | •     | Ť        | 1     | -       | Ŧ          |
|-----------------------------------|------------|-------|----------|-------|---------|------------|
| Lane Group                        | WBL        | WBR   | NBT      | NBR   | SBL     | SBT        |
| Lane Configurations               | Y          |       | el<br>el |       |         | र्स        |
| Traffic Volume (vph)              | 5          | 50    | 510      | 15    | 80      | 700        |
| Future Volume (vph)               | 5          | 50    | 510      | 15    | 80      | 700        |
| Ideal Flow (vphpl)                | 1900       | 1900  | 1900     | 1900  | 1900    | 1900       |
| Lane Util. Factor                 | 1.00       | 1.00  | 1.00     | 1.00  | 1.00    | 1.00       |
| Ped Bike Factor                   |            |       |          |       |         |            |
| Frt                               | 0.877      |       | 0.996    |       |         |            |
| Flt Protected                     | 0.995      |       |          |       |         | 0.995      |
| Satd. Flow (prot)                 | 1625       | 0     | 1855     | 0     | 0       | 1853       |
| Flt Permitted                     | 0.995      |       |          |       |         | 0.995      |
| Satd. Flow (perm)                 | 1625       | 0     | 1855     | 0     | 0       | 1853       |
| Link Speed (mph)                  | 30         |       | 30       |       |         | 30         |
| Link Distance (ft)                | 158        |       | 172      |       |         | 185        |
| Travel Time (s)                   | 3.6        |       | 3.9      |       |         | 4.2        |
| Confl. Peds. (#/hr)               | 1          | 1     |          | 1     | 1       |            |
| Peak Hour Factor                  | 0.84       | 0.84  | 0.84     | 0.84  | 0.84    | 0.84       |
| Adj. Flow (vph)                   | 6          | 60    | 607      | 18    | 95      | 833        |
| Shared Lane Traffic (%)           |            |       |          |       |         |            |
| Lane Group Flow (vph)             | 66         | 0     | 625      | 0     | 0       | 928        |
| Enter Blocked Intersection        | No         | No    | No       | No    | No      | No         |
| Lane Alignment                    | Left       | Right | Left     | Right | Left    | Left       |
| Median Width(ft)                  | 12         |       | 0        |       |         | 0          |
| Link Offset(ft)                   | 0          |       | 0        |       |         | 0          |
| Crosswalk Width(ft)               | 16         |       | 16       |       |         | 16         |
| Two way Left Turn Lane            |            |       |          |       |         |            |
| Headway Factor                    | 1.00       | 1.00  | 1.00     | 1.00  | 1.00    | 1.00       |
| Turning Speed (mph)               | 15         | 9     |          | 9     | 15      | _          |
| Sign Control                      | Stop       |       | Free     |       |         | Free       |
| Intersection Summary              |            |       |          |       |         |            |
| Area Type:                        | Other      |       |          |       |         |            |
| Control Type: Unsignalized        |            |       |          |       |         |            |
| Intersection Capacity Utilization | tion 82.8% |       |          | IC    | U Level | of Service |

Analysis Period (min) 15

|                              | -     | •     | <b>†</b> | 1     | ×     | +     |
|------------------------------|-------|-------|----------|-------|-------|-------|
| Lane Group                   | WBL   | WBR   | NBT      | NBR   | SBL   | SBT   |
| Lane Configurations          | 5     | 1     | 1.       |       |       | ្ឋ    |
| Traffic Volume (vph)         | 75    | 65    | 435      | 40    | 10    | 450   |
| Future Volume (vph)          | 75    | 65    | 435      | 40    | 10    | 450   |
| Ideal Flow (vphpl)           | 1900  | 1900  | 1900     | 1900  | 1900  | 1900  |
| Storage Length (ft)          | 0     | 0     |          | 50    | 0     |       |
| Storage Lanes                | 1     | 1     |          | 0     | 0     |       |
| Taper Length (ft)            | 25    | •     |          | •     | 25    |       |
| Lane Util, Factor            | 1 00  | 1.00  | 1 00     | 1 00  | 1 00  | 1 00  |
| Frt                          | 1.00  | 0.850 | 0.989    | 1.00  | 1.00  | 1.00  |
| Elt Protected                | 0 950 | 0.000 | 0.000    |       |       | 0 999 |
| Satd Flow (prot)             | 1770  | 1583  | 1842     | 0     | 0     | 1861  |
| Elt Permitted                | 0.950 | 1000  | 1042     | U     | 0     | 1001  |
| Satd Flow (perm)             | 1770  | 1583  | 18/12    | 0     | Λ     | 1863  |
| Dight Turn on Pod            | 1770  | Voc   | 1042     | Vac   | U     | 1005  |
| Sate Flow (DTOD)             |       | 74    | 15       | 162   |       |       |
| Jaiu. FIUW (RTUR)            | 20    | / 1   | CI<br>20 |       |       | 20    |
| Link Speed (mpn)             | 30    |       | 30       |       |       | 30    |
| LINK DISTANCE (II)           | 151   |       | 191      |       |       | 249   |
| Travel Time (s)              | 3.4   | 0.04  | 4.3      | 0.04  | 0.04  | 5./   |
| Peak Hour Factor             | 0.91  | 0.91  | 0.91     | 0.91  | 0.91  | 0.91  |
| Adj. Flow (vph)              | 82    | 71    | 478      | 44    | 11    | 495   |
| Shared Lane Traffic (%)      |       |       |          | -     | -     |       |
| Lane Group Flow (vph)        | 82    | 71    | 522      | 0     | 0     | 506   |
| Enter Blocked Intersection   | No    | No    | No       | No    | No    | No    |
| Lane Alignment               | Left  | Right | Left     | Right | Left  | Left  |
| Median Width(ft)             | 12    |       | 0        |       |       | 0     |
| Link Offset(ft)              | 0     |       | 0        |       |       | 0     |
| Crosswalk Width(ft)          | 16    |       | 16       |       |       | 16    |
| Two way Left Turn Lane       |       |       |          |       |       |       |
| Headway Factor               | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  |
| Turning Speed (mph)          | 15    | 9     |          | 9     | 15    |       |
| Number of Detectors          | 1     | 1     | 2        |       | 1     | 2     |
| Detector Template            | Left  | Riaht | Thru     |       | Left  | Thru  |
| Leading Detector (ft)        | 20    | 20    | 100      |       | 20    | 100   |
| Trailing Detector (ff)       | 0     |       | 0        |       |       | 0     |
| Detector 1 Position(ft)      | 0     | 0     | 0        |       | 0     | 0     |
| Detector 1 Size(ft)          | 20    | 20    | 6        |       | 20    | 6     |
| Detector 1 Type              | CI+Ev | CI+Ev | CI+Ev    |       | CI+Ex | CI+Ev |
| Detector 1 Channel           |       |       |          |       |       |       |
| Detector 1 Extend (c)        | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0   |
| Detector 1 Oucus (s)         | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0   |
| Detector 1 Deley (s)         | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0   |
| Detector 1 Delay (S)         | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0   |
| Detector 2 Position( $\pi$ ) |       |       | 94       |       |       | 94    |
| Detector 2 Size(ft)          |       |       | 6        |       |       | 6     |
| Detector 2 Type              |       |       | CI+Ex    |       |       | CI+Ex |
| Detector 2 Channel           |       |       |          |       |       |       |
| Detector 2 Extend (s)        |       |       | 0.0      |       |       | 0.0   |
| Turn Type                    | Prot  | pt+ov | NA       |       | pm+pt | NA    |
| Protected Phases             | 4     | 4 5   | 6        |       | 5     | 2     |
| Permitted Phases             |       |       |          |       | 2     |       |

Existing (2019) Traffic Volumes

Synchro 10 Report

|                            | <             | •    | Ť     | 1   | 1          | Ŧ          |
|----------------------------|---------------|------|-------|-----|------------|------------|
| Lane Group                 | WBL           | WBR  | NBT   | NBR | SBL        | SBT        |
| Detector Phase             | 4             | 4 5  | 6     |     | 5          | 2          |
| Switch Phase               |               |      |       |     |            |            |
| Minimum Initial (s)        | 5.0           |      | 5.0   |     | 5.0        | 5.0        |
| Minimum Split (s)          | 10.0          |      | 10.0  |     | 9.0        | 15.5       |
| Total Split (s)            | 10.0          |      | 11.0  |     | 9.0        | 20.0       |
| Total Split (%)            | 33.3%         |      | 36.7% |     | 30.0%      | 66.7%      |
| Maximum Green (s)          | 7.0           |      | 8.0   |     | 6.0        | 17.0       |
| Yellow Time (s)            | 2.0           |      | 2.0   |     | 2.0        | 2.0        |
| All-Red Time (s)           | 1.0           |      | 1.0   |     | 1.0        | 1.0        |
| Lost Time Adjust (s)       | 0.0           |      | 0.0   |     |            | 0.0        |
| Total Lost Time (s)        | 3.0           |      | 3.0   |     |            | 3.0        |
| Lead/Lag                   |               |      | Lead  |     | Lag        |            |
| Lead-Lag Optimize?         |               |      | Yes   |     | Yes        |            |
| Vehicle Extension (s)      | 3.0           |      | 3.0   |     | 3.0        | 3.0        |
| Recall Mode                | None          |      | None  |     | Max        | None       |
| Act Effct Green (s)        | 6.5           | 15.9 | 8.3   |     |            | 19.2       |
| Actuated g/C Ratio         | 0.25          | 0.61 | 0.32  |     |            | 0.74       |
| v/c Ratio                  | 0.18          | 0.07 | 0.87  |     |            | 0.37       |
| Control Delay              | 10.2          | 1.4  | 33.2  |     |            | 4.0        |
| Queue Delay                | 0.0           | 0.0  | 0.0   |     |            | 0.0        |
| Total Delay                | 10.2          | 1.4  | 33.2  |     |            | 4.0        |
| LOS                        | В             | А    | С     |     |            | А          |
| Approach Delay             | 6.1           |      | 33.2  |     |            | 4.0        |
| Approach LOS               | А             |      | С     |     |            | А          |
| Intersection Summary       |               |      |       |     |            |            |
| Area Type:                 | Other         |      |       |     |            |            |
| Cycle Length: 30           |               |      |       |     |            |            |
| Actuated Cycle Length: 2   | 25.9          |      |       |     |            |            |
| Natural Cycle: 40          |               |      |       |     |            |            |
| Control Type: Semi Act-U   | Jncoord       |      |       |     |            |            |
| Maximum v/c Ratio: 0.87    |               |      |       |     |            |            |
| Intersection Signal Delay  | : 17.2        |      |       | Ir  | ntersectio | n LOS: B   |
| Intersection Capacity Util | ization 42.5% |      |       | 10  | CU Level   | of Service |
| Analysis Period (min) 15   |               |      |       |     |            |            |

#### Splits and Phases: 3: Landwehr & South Winkelman Access

| ₩ø2         |                        | ₹04  |  |
|-------------|------------------------|------|--|
| 20 s        |                        | 10 s |  |
| <b>1</b> ø6 | <b>V</b> <sub>Ø5</sub> |      |  |
| 11 s        | 9s                     |      |  |

|                                                               | 4     | *     | 1     | 1     | 1    | Ŧ     |  |
|---------------------------------------------------------------|-------|-------|-------|-------|------|-------|--|
| Lane Group                                                    | WBL   | WBR   | NBT   | NBR   | SBL  | SBT   |  |
| Lane Configurations                                           | Y     |       | 4Î    |       |      | र्स   |  |
| Traffic Volume (vph)                                          | 35    | 70    | 500   | 10    | 25   | 425   |  |
| Future Volume (vph)                                           | 35    | 70    | 500   | 10    | 25   | 425   |  |
| Ideal Flow (vphpl)                                            | 1900  | 1900  | 1900  | 1900  | 1900 | 1900  |  |
| Lane Util. Factor                                             | 1.00  | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  |  |
| Ped Bike Factor                                               |       |       |       |       |      |       |  |
| Frt                                                           | 0.910 |       | 0.997 |       |      |       |  |
| Flt Protected                                                 | 0.984 |       |       |       |      | 0.997 |  |
| Satd. Flow (prot)                                             | 1668  | 0     | 1857  | 0     | 0    | 1857  |  |
| Flt Permitted                                                 | 0.984 |       |       |       |      | 0.997 |  |
| Satd. Flow (perm)                                             | 1668  | 0     | 1857  | 0     | 0    | 1857  |  |
| Link Speed (mph)                                              | 30    |       | 30    |       |      | 30    |  |
| Link Distance (ft)                                            | 158   |       | 172   |       |      | 185   |  |
| Travel Time (s)                                               | 3.6   |       | 3.9   |       |      | 4.2   |  |
| Confl. Peds. (#/hr)                                           | 1     | 1     |       | 1     | 1    |       |  |
| Peak Hour Factor                                              | 0.96  | 0.96  | 0.96  | 0.96  | 0.96 | 0.96  |  |
| Adj. Flow (vph)                                               | 36    | 73    | 521   | 10    | 26   | 443   |  |
| Shared Lane Traffic (%)                                       |       |       |       |       |      |       |  |
| Lane Group Flow (vph)                                         | 109   | 0     | 531   | 0     | 0    | 469   |  |
| Enter Blocked Intersection                                    | No    | No    | No    | No    | No   | No    |  |
| Lane Alignment                                                | Left  | Right | Left  | Right | Left | Left  |  |
| Median Width(ft)                                              | 12    |       | 0     |       |      | 0     |  |
| Link Offset(ft)                                               | 0     |       | 0     |       |      | 0     |  |
| Crosswalk Width(ft)                                           | 16    |       | 16    |       |      | 16    |  |
| Two way Left Turn Lane                                        |       |       |       |       |      |       |  |
| Headway Factor                                                | 1.00  | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  |  |
| Turning Speed (mph)                                           | 15    | 9     |       | 9     | 15   |       |  |
| Sign Control                                                  | Stop  |       | Free  |       |      | Free  |  |
| Intersection Summary                                          |       |       |       |       |      |       |  |
| Area Type:                                                    | Other |       |       |       |      |       |  |
| Control Type: Unsignalized                                    |       |       |       |       |      |       |  |
| Itersection Capacity Utilization 56.0% ICU Level of Service B |       |       |       |       |      |       |  |

Analysis Period (min) 15

# FUTURE CAPACITY REPORTS (WITH LEFT AND RIGHT TURN LANE)

|                            | 4     | •     | Ť         | 1     | 1     | Ļ         |
|----------------------------|-------|-------|-----------|-------|-------|-----------|
| Lane Group                 | WBL   | WBR   | NBT       | NBR   | SBL   | SBT       |
| Lane Configurations        | K     | 1     | *         | 1     | *     | *         |
| Traffic Volume (vph)       | 90    | 85    | 440       | 140   | 85    | 625       |
| Future Volume (vph)        | 90    | 85    | 440       | 140   | 85    | 625       |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900      | 1900  | 1900  | 1900      |
| Lane Litil Factor          | 1 00  | 1 00  | 1 00      | 1 00  | 1 00  | 1 00      |
| Frt                        | 1.00  | 0.850 | 1.00      | 0.850 | 1.00  | 1.00      |
| Elt Protected              | 0 950 | 0.000 |           | 0.000 | 0.950 |           |
| Satd Flow (prot)           | 1770  | 1583  | 1863      | 1583  | 1770  | 1863      |
| Elt Permitted              | 0.950 | 1000  | 1005      | 1000  | 0 357 | 1005      |
| Satd Flow (perm)           | 1770  | 1583  | 1863      | 1583  | 665   | 1863      |
| Dight Turn on Pod          | 1770  | Voc   | 1005      | Voc   | 005   | 1005      |
| Sata Elaw (DTOD)           |       | 77    |           | 160   |       |           |
| Salu. Flow (RTOR)          | 20    | 11    | 20        | 109   |       | 20        |
| Link Speed (mpn)           | 30    |       | 30        |       |       | 30        |
| LINK DISTANCE (II)         | 151   |       | 191       |       |       | 249       |
| Travel Time (s)            | 3.4   | 0.00  | 4.3       | 0.00  | 0.00  | 5./       |
| Peak Hour Factor           | 0.83  | 0.83  | 0.83      | 0.83  | 0.83  | 0.83      |
| Adj. Flow (vph)            | 108   | 102   | 530       | 169   | 102   | 753       |
| Shared Lane Traffic (%)    |       |       |           |       |       |           |
| Lane Group Flow (vph)      | 108   | 102   | 530       | 169   | 102   | 753       |
| Enter Blocked Intersection | No    | No    | No        | No    | No    | No        |
| Lane Alignment             | Left  | Right | Left      | Right | Left  | Left      |
| Median Width(ft)           | 12    |       | 12        |       |       | 12        |
| Link Offset(ft)            | 0     |       | 0         |       |       | 0         |
| Crosswalk Width(ft)        | 16    |       | 16        |       |       | 16        |
| Two way Left Turn Lane     |       |       |           |       |       |           |
| Headway Factor             | 1.00  | 1.00  | 1.00      | 1.00  | 1.00  | 1.00      |
| Turning Speed (mph)        | 15    | 9     |           | 9     | 15    |           |
| Number of Detectors        | 1     | 1     | 2         | 1     | 1     | 2         |
| Detector Template          | Left  | Right | –<br>Thru | Right | l eft | –<br>Thru |
| Leading Detector (ft)      | 20    | 20    | 100       | 20    | 20    | 100       |
| Trailing Detector (ft)     | 20    | 20    | 0         | 20    | 20    | 0         |
| Detector 1 Position(ft)    | 0     | 0     | 0         | 0     | 0     | 0         |
| Detector 1 Sizo(ft)        | 20    | 20    | 6         | 20    | 20    | 6         |
| Detector 1 Size(it)        |       |       |           |       |       |           |
| Detector 1 Type            | UI+EX | UI+EX | CI+EX     | UI+EX | CI+EX | UI+EX     |
| Detector I Channel         | 0.0   | 0.0   | 0.0       | 0.0   | 0.0   | 0.0       |
| Detector 1 Extend (s)      | 0.0   | 0.0   | 0.0       | 0.0   | 0.0   | 0.0       |
| Detector 1 Queue (s)       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0   | 0.0       |
| Detector 1 Delay (s)       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0   | 0.0       |
| Detector 2 Position(ft)    |       |       | 94        |       |       | 94        |
| Detector 2 Size(ft)        |       |       | 6         |       |       | 6         |
| Detector 2 Type            |       |       | Cl+Ex     |       |       | CI+Ex     |
| Detector 2 Channel         |       |       |           |       |       |           |
| Detector 2 Extend (s)      |       |       | 0.0       |       |       | 0.0       |
| Turn Type                  | Prot  | pt+ov | NA        | Perm  | pm+pt | NA        |
| Protected Phases           | 4     | 4 5   | 6         |       | 5     | 2         |
| Permitted Phases           | -     |       | <u> </u>  | 6     | 2     | _         |
| Detector Phase             | 4     | 4 5   | 6         | 6     | 5     | 2         |
| Switch Phase               | т     | 10    | v         | U     | U     | £         |
| Minimum Initial (s)        | 5.0   |       | 5.0       | 50    | 50    | 50        |
| wiiniiniunii iniiliai (5)  | 5.0   |       | 0.0       | 5.0   | 5.0   | 5.0       |

Existing (2019) Traffic Volumes

Synchro 10 Report

|                              | <           | *    | <b>†</b> | 1     | 1          | Ŧ          |    |
|------------------------------|-------------|------|----------|-------|------------|------------|----|
| Lane Group                   | WBL         | WBR  | NBT      | NBR   | SBL        | SBT        |    |
| Minimum Split (s)            | 10.0        |      | 10.0     | 10.0  | 9.0        | 15.5       |    |
| Total Split (s)              | 10.0        |      | 11.0     | 11.0  | 9.0        | 20.0       |    |
| Total Split (%)              | 33.3%       |      | 36.7%    | 36.7% | 30.0%      | 66.7%      |    |
| Maximum Green (s)            | 7.0         |      | 8.0      | 8.0   | 6.0        | 17.0       |    |
| Yellow Time (s)              | 2.0         |      | 2.0      | 2.0   | 2.0        | 2.0        |    |
| All-Red Time (s)             | 1.0         |      | 1.0      | 1.0   | 1.0        | 1.0        |    |
| Lost Time Adjust (s)         | 0.0         |      | 0.0      | 0.0   | 0.0        | 0.0        |    |
| Total Lost Time (s)          | 3.0         |      | 3.0      | 3.0   | 3.0        | 3.0        |    |
| Lead/Lag                     |             |      | Lead     | Lead  | Lag        |            |    |
| Lead-Lag Optimize?           |             |      | Yes      | Yes   | Yes        |            |    |
| Vehicle Extension (s)        | 3.0         |      | 3.0      | 3.0   | 3.0        | 3.0        |    |
| Recall Mode                  | None        |      | None     | None  | Max        | None       |    |
| Act Effct Green (s)          | 6.6         | 15.9 | 8.2      | 8.2   | 17.5       | 18.3       |    |
| Actuated g/C Ratio           | 0.24        | 0.57 | 0.29     | 0.29  | 0.63       | 0.66       |    |
| v/c Ratio                    | 0.26        | 0.11 | 0.97     | 0.29  | 0.15       | 0.62       |    |
| Control Delay                | 11.2        | 1.9  | 50.4     | 3.6   | 4.2        | 7.5        |    |
| Queue Delay                  | 0.0         | 0.0  | 0.0      | 0.0   | 0.0        | 0.0        |    |
| Total Delay                  | 11.2        | 1.9  | 50.4     | 3.6   | 4.2        | 7.5        |    |
| LOS                          | В           | А    | D        | А     | А          | А          |    |
| Approach Delay               | 6.7         |      | 39.1     |       |            | 7.1        |    |
| Approach LOS                 | А           |      | D        |       |            | А          |    |
| Intersection Summary         |             |      |          |       |            |            |    |
| Area Type:                   | Other       |      |          |       |            |            |    |
| Cycle Length: 30             |             |      |          |       |            |            |    |
| Actuated Cycle Length: 27    | .9          |      |          |       |            |            |    |
| Natural Cycle: 40            |             |      |          |       |            |            |    |
| Control Type: Semi Act-Ur    | ncoord      |      |          |       |            |            |    |
| Maximum v/c Ratio: 0.97      |             |      |          |       |            |            |    |
| Intersection Signal Delay:   | 19.7        |      |          | Ir    | ntersectio | n LOS: B   |    |
| Intersection Capacity Utiliz | ation 44.5% |      |          | 10    | CU Level   | of Service | γA |
| Analysis Period (min) 15     |             |      |          |       |            |            |    |

| Splits and Phases: | 3: Landwehr & South Winkelman Access |
|--------------------|--------------------------------------|
|--------------------|--------------------------------------|



|                            | 4     | •     | Ť     | 1     | 1     | ŧ     |
|----------------------------|-------|-------|-------|-------|-------|-------|
| Lane Group                 | WBL   | WBR   | NBT   | NBR   | SBL   | SBT   |
| Lane Configurations        | 5     | 1     | *     | 1     | 5     | *     |
| Traffic Volume (vph)       | 75    | 65    | 435   | 40    | 10    | 450   |
| Future Volume (vph)        | 75    | 65    | 435   | 40    | 10    | 450   |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900  | 1900  | 1900  | 1900  |
| Storage Length (ft)        | 0     | 0     | 1000  | 50    | 0     | 1000  |
| Storage Lanes              | 1     | 1     |       | 1     | 1     |       |
| Taper Length (ft)          | 25    | 1     |       | I     | 25    |       |
|                            | 1 00  | 1 00  | 1 00  | 1 00  | 1 00  | 1 00  |
|                            | 1.00  | 0.950 | 1.00  | 0.950 | 1.00  | 1.00  |
| Fil<br>Fit Drotoctod       | 0.050 | 0.000 |       | 0.000 | 0.050 |       |
| Fil Piolecieu              | 0.950 | 1500  | 1000  | 4500  | 1770  | 1000  |
| Sato. Flow (prot)          | 1//0  | 1583  | 1863  | 1583  | 1770  | 1863  |
| Fit Permitted              | 0.950 | 1500  | 1000  | 4500  | 0.354 | 1000  |
| Satd. Flow (perm)          | 1770  | 1583  | 1863  | 1583  | 659   | 1863  |
| Right Turn on Red          |       | Yes   |       | Yes   |       |       |
| Satd. Flow (RTOR)          |       | 71    |       | 44    |       |       |
| Link Speed (mph)           | 30    |       | 30    |       |       | 30    |
| Link Distance (ft)         | 151   |       | 191   |       |       | 249   |
| Travel Time (s)            | 3.4   |       | 4.3   |       |       | 5.7   |
| Peak Hour Factor           | 0.91  | 0.91  | 0.91  | 0.91  | 0.91  | 0.91  |
| Adi, Flow (vph)            | 82    | 71    | 478   | 44    | 11    | 495   |
| Shared Lane Traffic (%)    |       |       |       |       |       |       |
| Lane Group Flow (vph)      | 82    | 71    | 478   | 44    | 11    | 495   |
| Enter Blocked Intersection | No    | No    | No    | No    | No    | No    |
| Lano Alignmont             | Loft  | Dight | Loft  | Diaht | Loft  | Loft  |
| Lane Alignment             | 10    | Right | 10    | Right | Leit  | 10    |
|                            | 12    |       | 12    |       |       | 12    |
|                            | 0     |       | 0     |       |       | 0     |
| Crosswalk Width(ft)        | 16    |       | 16    |       |       | 16    |
| Two way Left Turn Lane     |       |       |       |       |       |       |
| Headway Factor             | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  |
| Turning Speed (mph)        | 15    | 9     |       | 9     | 15    |       |
| Number of Detectors        | 1     | 1     | 2     | 1     | 1     | 2     |
| Detector Template          | Left  | Right | Thru  | Right | Left  | Thru  |
| Leading Detector (ft)      | 20    | 20    | 100   | 20    | 20    | 100   |
| Trailing Detector (ft)     | 0     | 0     | 0     | 0     | 0     | 0     |
| Detector 1 Position(ft)    | 0     | 0     | 0     | 0     | 0     | 0     |
| Detector 1 Size(ft)        | 20    | 20    | 6     | 20    | 20    | 6     |
| Detector 1 Type            |       |       |       |       |       |       |
| Detector 1 Channel         |       |       |       |       |       |       |
| Detector 1 Extend (a)      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Detector I Extend (S)      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Detector 1 Queue (s)       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Detector 1 Delay (s)       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Detector 2 Position(ft)    |       |       | 94    |       |       | 94    |
| Detector 2 Size(ft)        |       |       | 6     |       |       | 6     |
| Detector 2 Type            |       |       | CI+Ex |       |       | CI+Ex |
| Detector 2 Channel         |       |       |       |       |       |       |
| Detector 2 Extend (s)      |       |       | 0.0   |       |       | 0.0   |
| Turn Type                  | Prot  | pt+ov | NA    | Perm  | pm+pt | NA    |
| Protected Phases           | 4     | 4 5   | 6     |       | 5     | 2     |
| Permitted Phases           |       |       |       | 6     | 2     | _     |
|                            |       |       |       | 0     | 2     |       |

Existing (2019) Traffic Volumes

Synchro 10 Report

| 4            | *                                                                                                                                                                                                  | Ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| WBL          | WBR                                                                                                                                                                                                | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 4            | 4 5                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|              |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 5.0          |                                                                                                                                                                                                    | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 10.0         |                                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 10.0         |                                                                                                                                                                                                    | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 33.3%        |                                                                                                                                                                                                    | 36.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 7.0          |                                                                                                                                                                                                    | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 2.0          |                                                                                                                                                                                                    | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 1.0          |                                                                                                                                                                                                    | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0.0          |                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 3.0          |                                                                                                                                                                                                    | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|              |                                                                                                                                                                                                    | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|              |                                                                                                                                                                                                    | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 3.0          |                                                                                                                                                                                                    | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| None         |                                                                                                                                                                                                    | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 6.5          | 15.9                                                                                                                                                                                               | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 0.25         | 0.61                                                                                                                                                                                               | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 0.19         | 0.07                                                                                                                                                                                               | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 10.2         | 1.4                                                                                                                                                                                                | 27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0.0          | 0.0                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 10.2         | 1.4                                                                                                                                                                                                | 27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| В            | А                                                                                                                                                                                                  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 6.1          |                                                                                                                                                                                                    | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| А            |                                                                                                                                                                                                    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|              |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Other        |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|              |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 6            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|              |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| ncoord       |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|              |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 13.7         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ntersectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n LOS: B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| zation 34.5% |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CU Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|              |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Intersection Capacity Utilization 34.5% ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|              | WBL<br>4<br>5.0<br>10.0<br>10.0<br>33.3%<br>7.0<br>2.0<br>1.0<br>0.0<br>3.0<br>None<br>6.5<br>0.25<br>0.19<br>10.2<br>0.0<br>10.2<br>B<br>6.1<br>A<br>Other<br>5<br>ncoord<br>13.7<br>zation 34.5% | WBL         WBR           4         4 5           5.0         10.0           10.0         33.3%           7.0         2.0           1.0         0.0           3.0         0.0           3.0         0.0           3.0         0.0           3.0         0.0           3.0         0.0           0.0         3.0           0.0         0.0           10.2         1.4           0.0         0.0           10.2         1.4           B         A           6.1         A           Other         5           0         0.0           13.7         zation 34.5% | WBL         WBR         NBT           4         4 5         6           5.0         5.0           10.0         10.0           10.0         10.0           10.0         11.0           33.3%         36.7%           7.0         8.0           2.0         2.0           1.0         1.0           0.0         0.0           3.0         3.0           3.0         3.0           3.0         3.0           S.0         3.0           0.0         0.0           3.0         3.0           None         None           6.5         15.9         8.3           0.25         0.61         0.32           0.19         0.07         0.80           10.2         1.4         27.4           B         A         C           6.1         25.4         A           A         C           6.1         25.4           A         C           0         0.0           0.0         0.0           13.7         24.5% | WBL         WBR         NBT         NBR           4         4 5         6         6           5.0         5.0         5.0         10.0           10.0         10.0         10.0         10.0           10.0         11.0         11.0         11.0           33.3%         36.7%         36.7%         36.7%           7.0         8.0         8.0         2.0         2.0           1.0         1.0         1.0         1.0         1.0           0.0         0.0         0.0         0.0         3.0           3.0         3.0         3.0         3.0         3.0           3.0         3.0         3.0         3.0         3.0           0.0         0.0         0.0         0.0         0.0           None         None         None         None         0.0           0.19         0.07         0.80         0.08         10.2         1.4         27.4         4.0           0.0         0.0         0.0         0.0         0.0         0.0         1.0         1.0         1.1         1.4         27.4         4.0         1.4         2.4         4.0         1.4 | WBL         WBR         NBT         NBR         SBL           4         4 5         6         6         5           5.0         5.0         5.0         5.0         10.0         10.0         9.0           10.0         11.0         11.0         9.0         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0%         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0         30.0 <t< td=""></t<> |  |  |  |  |

#### Splits and Phases: 3: Landwehr & South Winkelman Access

| ₩ø2  |              | ₹04  |  |
|------|--------------|------|--|
| 20 s |              | 10 s |  |
| ¶ø6  | <b>\$</b> 05 |      |  |
| 11 s | 9 s          |      |  |

QUEUE DATA

| AM | AM Arrival Queue Analysis |               |             |           |            |  |  |  |
|----|---------------------------|---------------|-------------|-----------|------------|--|--|--|
|    | In                        | Start Dropoff | End Dropoff | Load Time | Total Time |  |  |  |
| 1  | 7:37:24 AM                | 7:48:14       | 7:49:50     | 0:01:36   | 0:12:26    |  |  |  |
| 2  | 7:39:38 AM                | 7:40:07       | 7:41:16     | 0:01:09   | 0:01:38    |  |  |  |
| 3  | 7:41:32 AM                | 7:49:19       | 7:49:28     | 0:00:09   | 0:07:56    |  |  |  |
| 4  | 7:41:46 AM                | 7:49:00       | 7:49:12     | 0:00:12   | 0:07:26    |  |  |  |
| 5  | 7:42:32 AM                | 7:43:45       | 7:49:00     | 0:05:15   | 0:06:28    |  |  |  |
| 6  | 7:45:01 AM                | 7:49:49       | 7:49:56     | 0:00:07   | 0:04:55    |  |  |  |
| 7  | 7:45:02 AM                | 7:49:13       | 7:49:19     | 0:00:06   | 0:04:17    |  |  |  |
| 8  | 7:45:03 AM                | 7:49:13       | 7:49:19     | 0:00:06   | 0:04:16    |  |  |  |
| 9  | 7:45:04 AM                | 7:49:29       | 7:49:35     | 0:00:06   | 0:04:31    |  |  |  |
| 10 | 7:45:05 AM                | 7:49:32       | 7:49:43     | 0:00:11   | 0:04:38    |  |  |  |
| 11 | 7:46:04 AM                | 7:50:10       | 7:50:16     | 0:00:06   | 0:04:12    |  |  |  |
| 12 | 7:46:09 AM                | 7:50:24       | 7:50:32     | 0:00:08   | 0:04:23    |  |  |  |
| 13 | 7:46:15 AM                | 7:50:15       | 7:50:24     | 0:00:09   | 0:04:09    |  |  |  |
| 14 | 7:46:23 AM                | 7:50:38       | 7:50:51     | 0:00:13   | 0:04:28    |  |  |  |
| 15 | 7:46:25 AM                | 7:51:18       | 7:51:32     | 0:00:14   | 0:05:07    |  |  |  |
| 10 | 7:40:32 AIVI              | 7:50:40       | 7:50:57     | 0:00:17   | 0:04:25    |  |  |  |
| 10 | 7:47:01 AIVI              | 7:51:14       | 7:51:35     | 0:00:21   | 0:04:34    |  |  |  |
| 10 | 7.46.23 AN                | 7.51.10       | 7.51.59     | 0.00.23   | 0.03.10    |  |  |  |
| 20 | 7:48:35 AM                | 7:51:13       | 7:51:50     | 0:00:31   | 0.03.17    |  |  |  |
| 20 | 7:48:35 AM                | 7:52:03       | 7.51.38     | 0.00.23   | 0.03.23    |  |  |  |
| 31 | 7:53:22 AM                | 7:52:05       | 7:52:12     | 0:00:03   | 0:00:30    |  |  |  |
| 32 | 7:53:49 AM                | 7:54:09       | 7:54:32     | 0:00:23   | 0:00:30    |  |  |  |
| 32 | 7:53:54 AM                | 7:54:26       | 7:55:23     | 0:00:57   | 0:00:45    |  |  |  |
| 34 | 7:54:15 AM                | 7:54:20       | 7:54:59     | 0:00:25   | 0:00:44    |  |  |  |
| 35 | 7:54:19 AM                | 7:54:41       | 7:55:03     | 0:00:22   | 0:00:44    |  |  |  |
| 36 | 7:54:26 AM                | 7:55:07       | 7:55:30     | 0:00:23   | 0:01:04    |  |  |  |
| 37 | 7:54:28 AM                | 7:54:49       | 7:55:48     | 0:00:59   | 0:01:20    |  |  |  |
| 38 | 7:54:54 AM                | 7:55:54       | 7:56:06     | 0:00:12   | 0:01:12    |  |  |  |
| 39 | 7:54:57 AM                | 7:55:59       | 7:56:13     | 0:00:14   | 0:01:16    |  |  |  |
| 40 | 7:55:04 AM                | 7:55:58       | 7:56:16     | 0:00:18   | 0:01:12    |  |  |  |
| 41 | 7:55:08 AM                | 7:56:04       | 7:56:18     | 0:00:14   | 0:01:10    |  |  |  |
| 42 | 7:55:30 AM                | 7:56:06       | 7:56:24     | 0:00:18   | 0:00:54    |  |  |  |
| 43 | 7:55:35 AM                | 7:56:08       | 7:56:25     | 0:00:17   | 0:00:50    |  |  |  |
| 44 | 7:55:45 AM                | 7:56:34       | 7:56:50     | 0:00:16   | 0:01:05    |  |  |  |
| 45 | 7:55:46 AM                | 7:56:40       | 7:56:59     | 0:00:19   | 0:01:13    |  |  |  |
| 46 | 7:55:53 AM                | 7:56:43       | 7:57:08     | 0:00:25   | 0:01:15    |  |  |  |
| 47 | 7:55:57 AM                | 7:57:13       | 7:57:38     | 0:00:25   | 0:01:41    |  |  |  |
| 48 | 7:56:15 AM                | 7:56:59       | 7:57:15     | 0:00:16   | 0:01:00    |  |  |  |
| 49 | 7:56:25 AM                | 7:57:17       | 7:57:31     | 0:00:14   | 0:01:06    |  |  |  |
| 50 | 7:56:40 AM                | 7:57:19       | 7:57:33     | 0:00:14   | 0:00:53    |  |  |  |
| 51 | 7:56:46 AM                | 7:57:38       | 7:57:53     | 0:00:15   | 0:01:07    |  |  |  |
| 52 | 7:56:54 AM                | 7:57:34       | 7:57:54     | 0:00:20   | 0:01:00    |  |  |  |
| 53 | 7:56:55 AM                | 7:57:52       | 7:58:10     | 0:00:18   | 0:01:15    |  |  |  |
| 54 | 7:56:59 AM                | 7:57:59       | 7:58:15     | 0:00:16   | 0:01:16    |  |  |  |
| 55 | 7:57:05 AM                | 7:58:24       | 7:58:43     | 0:00:19   | 0:01:38    |  |  |  |
| 50 | 7:57:10 AIV               | 7:58:24       | 7.58.45     | 0:00:21   | 0:01:35    |  |  |  |
| 57 | 7:57:17 AIVI              | 7:58:24       | 7.58.48     | 0:00:24   | 0:01:31    |  |  |  |
| 50 | 7:57:25 AIVI              | 7:58:29       | 7:58:41     | 0:00:12   | 0:01:16    |  |  |  |
| 59 | 7.57.20 AIVI              | 7.58.57       | 7.59.10     | 0.00:19   | 0.01.48    |  |  |  |
| 61 | 7.57.45 AM                | 7.58.40       | 7.50.52     | 0.00.12   | 0.01.19    |  |  |  |
| 62 | 7:58:00 AM                | 7:59:11       | 7.59.21     | 0.00.10   | 0.01.32    |  |  |  |
| 63 | 7:58:07 AM                | 7:59:08       | 7:59:16     | 0:00:08   | 0:01:09    |  |  |  |
| 64 | 7:58:49 AM                | 7:59:11       | 7:59:18     | 0:00:07   | 0:00:29    |  |  |  |
| 65 | 7:58:54 AM                | 7:59:14       | 7:59:32     | 0:00:18   | 0:00:38    |  |  |  |
| 66 | 7:58:59 AM                | 7:59:20       | 7:59:30     | 0:00:10   | 0:00:31    |  |  |  |
| 67 | 7:59:05 AM                | 7:59:56       | 8:00:09     | 0:00:13   | 0:01:04    |  |  |  |
| 68 | 7:59:14 AM                | 8:00:08       | 8:00:23     | 0:00:15   | 0:01:09    |  |  |  |
| 69 | 7:59:18 AM                | 8:00:00       | 8:00:09     | 0:00:09   | 0:00:51    |  |  |  |
| 70 | 7:59:20 AM                | 8:00:14       | 8:00:25     | 0:00:11   | 0:01:05    |  |  |  |
| 71 | 7:59:25 AM                | 8:00:38       | 8:00:51     | 0:00:13   | 0:01:26    |  |  |  |
| 72 | 7:59:34 AM                | 8:00:40       | 8:00:55     | 0:00:15   | 0:01:21    |  |  |  |
| 73 | 7:59:37 AM                | 8:00:55       | 8:01:03     | 0:00:08   | 0:01:26    |  |  |  |
| 74 | 7:59:41 AM                | 8:01:00       | 8:01:06     | 0:00:06   | 0:01:25    |  |  |  |
| 75 | 7:59:45 AM                | 8:01:01       | 8:01:21     | 0:00:20   | 0:01:36    |  |  |  |
| 76 | 7:59:47 AM                | 8:01:04       | 8:01:24     | 0:00:20   | 0:01:37    |  |  |  |
| 77 | 7:59:56 AM                | 8:01:01       | 8:01:36     | 0:00:35   | 0:01:40    |  |  |  |
| 78 | 8:00:00 AM                | 8:01:41       | 8:01:54     | 0:00:13   | 0:01:54    |  |  |  |
| 79 | 8:00:05 AM                | 8:01:47       | 8:02:29     | 0:00:42   | 0:02:24    |  |  |  |
| 80 | 8:00:10 AM                | 8:01:52       | 8:02:00     | 0:00:08   | 0:01:50    |  |  |  |
| 81 | 8:00:13 AM                | 8:01:56       | 8:02:08     | 0:00:12   | 0:01:55    |  |  |  |
| 82 | 8:00:17 AM                | 8:02:00       | 8:02:10     | 0:00:10   | 0:01:53    |  |  |  |
| 83 | 8:00:21 AM                | 8:02:02       | 8:02:12     | 0:00:10   | 0:01:51    |  |  |  |

| AM  | AM Arrival Queue Analysis |                    |                    |           |            |  |  |  |  |
|-----|---------------------------|--------------------|--------------------|-----------|------------|--|--|--|--|
|     | In                        | Start Dropoff      | End Dropoff        | Load Time | Total Time |  |  |  |  |
| 84  | 8:00:24 AM                | 8:02:02            | 8:02:14            | 0:00:12   | 0:01:50    |  |  |  |  |
| 85  | 8:00:27 AM                | 8:02:06            | 8:02:18            | 0:00:12   | 0:01:51    |  |  |  |  |
| 86  | 8:00:30 AM                | 8:02:09            | 8:02:22            | 0:00:13   | 0:01:52    |  |  |  |  |
| 82  | 8:00:34 AIVI              | 8:02:23            | 8:02:45            | 0:00:22   | 0:02:11    |  |  |  |  |
| 89  | 8:00:30 AM                | 8.02.33            | 8:02:50            | 0:00:13   | 0:02:14    |  |  |  |  |
| 90  | 8:00:41 AM                | 8:03:09            | 8:03:25            | 0:00:16   | 0:02:44    |  |  |  |  |
| 91  | 8:00:44 AM                | 8:03:22            | 8:03:36            | 0:00:14   | 0:02:52    |  |  |  |  |
| 92  | 8:00:46 AM                | 8:03:24            | 8:03:40            | 0:00:16   | 0:02:54    |  |  |  |  |
| 93  | 8:01:01 AM                | 8:03:30            | 8:03:41            | 0:00:11   | 0:02:40    |  |  |  |  |
| 94  | 8:01:15 AM                | 8:03:35            | 8:03:47            | 0:00:12   | 0:02:32    |  |  |  |  |
| 95  | 8:01:20 AM                | 8:03:43            | 8:03:50            | 0:00:07   | 0:02:30    |  |  |  |  |
| 96  | 8:01:22 AM                | 8:03:55            | 8:04:04            | 0:00:09   | 0:02:42    |  |  |  |  |
| 97  | 8:01:24 AIVI              | 8:04:00            | 8:04:08            | 0:00:08   | 0:02:44    |  |  |  |  |
| 90  | 8.01.35 AM                | 8.04.00            | 8.04.14            | 0:00:08   | 0.02.39    |  |  |  |  |
| 100 | 8:01:47 AM                | 8:04:16            | 8:04:29            | 0:00:13   | 0:02:42    |  |  |  |  |
| 101 | 8:01:52 AM                | 8:04:16            | 8:04:33            | 0:00:17   | 0:02:41    |  |  |  |  |
| 102 | 8:01:55 AM                | 8:04:40            | 8:04:53            | 0:00:13   | 0:02:58    |  |  |  |  |
| 103 | 8:01:58 AM                | 8:04:46            | 8:05:06            | 0:00:20   | 0:03:08    |  |  |  |  |
| 104 | 8:02:08 AM                | 8:04:46            | 8:05:09            | 0:00:23   | 0:03:01    |  |  |  |  |
| 105 | 8:02:30 AM                | 8:04:53            | 8:05:12            | 0:00:19   | 0:02:42    |  |  |  |  |
| 106 | 8:02:35 AM                | 8:05:01            | 8:05:15            | 0:00:14   | 0:02:40    |  |  |  |  |
| 107 | 8:02:37 AM                | 8:05:12            | 8:05:21            | 0:00:09   | 0:02:44    |  |  |  |  |
| 108 | 8:02:39 AIVI              | 8:05:21            | 8:05:45            | 0:00:24   | 0:03:06    |  |  |  |  |
| 110 | 8:02:33 AM                | 8:05:24            | 8:05:50            | 0:00:23   | 0:02:54    |  |  |  |  |
| 111 | 8:03:04 AM                | 8:05:30            | 8:05:55            | 0:00:25   | 0:02:51    |  |  |  |  |
| 112 | 8:03:10 AM                | 8:05:45            | 8:05:59            | 0:00:14   | 0:02:49    |  |  |  |  |
| 113 | 8:03:21 AM                | 8:06:05            | 8:06:18            | 0:00:13   | 0:02:57    |  |  |  |  |
| 114 | 8:03:23 AM                | 8:06:04            | 8:06:20            | 0:00:16   | 0:02:57    |  |  |  |  |
| 115 | 8:03:27 AM                | 8:06:07            | 8:06:34            | 0:00:27   | 0:03:07    |  |  |  |  |
| 116 | 8:03:34 AM                | 8:06:12            | 8:06:28            | 0:00:16   | 0:02:54    |  |  |  |  |
| 117 | 8:03:35 AM                | 8:06:45            | 8:06:59            | 0:00:14   | 0:03:24    |  |  |  |  |
| 110 | 8:03:37 AIVI              | 8:06:50            | 8:07:05            | 0:00:15   | 0:03:28    |  |  |  |  |
| 120 | 8:03:45 AM                | 8:00:38            | 8:07:36            | 0:00:11   | 0:03:50    |  |  |  |  |
| 121 | 8:03:50 AM                | 8:07:22            | 8:07:40            | 0:00:18   | 0:03:50    |  |  |  |  |
| 122 | 8:03:52 AM                | 8:07:40            | 8:08:29            | 0:00:49   | 0:04:37    |  |  |  |  |
| 123 | 8:03:56 AM                | 8:07:49            | 8:08:32            | 0:00:43   | 0:04:36    |  |  |  |  |
| 124 | 8:03:59 AM                | 8:08:25            | 8:08:40            | 0:00:15   | 0:04:41    |  |  |  |  |
| 125 | 8:04:01 AM                | 8:08:20            | 8:08:43            | 0:00:23   | 0:04:42    |  |  |  |  |
| 126 | 8:04:03 AM                | 8:08:49            | 8:08:57            | 0:00:08   | 0:04:54    |  |  |  |  |
| 127 | 8:04:05 AM                | 8:08:49            | 8:09:02            | 0:00:13   | 0:04:57    |  |  |  |  |
| 128 | 8:04:06 AIVI              | 8:08:59            | 8:09:16            | 0:00:17   | 0:05:10    |  |  |  |  |
| 129 | 8:04:08 AM                | 8.09.10            | 8:09:20            | 0:00:10   | 0:05:12    |  |  |  |  |
| 131 | 8:04:17 AM                | 8:09:12            | 8:09:24            | 0:00:12   | 0:05:07    |  |  |  |  |
| 132 | 8:04:22 AM                | 8:09:24            | 8:09:56            | 0:00:32   | 0:05:34    |  |  |  |  |
| 133 | 8:04:24 AM                | 8:09:24            | 8:10:09            | 0:00:45   | 0:05:45    |  |  |  |  |
| 134 | 8:04:30 AM                | 8:09:26            | 8:10:01            | 0:00:35   | 0:05:31    |  |  |  |  |
| 135 | 8:04:45 AM                | 8:09:59            | 8:10:10            | 0:00:11   | 0:05:25    |  |  |  |  |
| 136 | 8:04:47 AM                | 8:10:01            | 8:10:12            | 0:00:11   | 0:05:25    |  |  |  |  |
| 137 | 8:04:51 AM                | 8:10:08            | 8:10:16            | 0:00:08   | 0:05:25    |  |  |  |  |
| 120 | 8:05:00 AMA               | 8:10:19<br>8:10:22 | 8:10:30            | 0:00:11   | 0:05:33    |  |  |  |  |
| 139 | 8:05:00 AM                | 8.10.23            | 8:10:32            | 0:00:09   | 0:05:36    |  |  |  |  |
| 141 | 8:05:15 AM                | 8:10:27            | 8:10:36            | 0:00:09   | 0:05:21    |  |  |  |  |
| 142 | 8:05:30 AM                | 8:10:29            | 8:10:40            | 0:00:11   | 0:05:10    |  |  |  |  |
| 143 | 8:05:44 AM                | 8:10:40            | 8:10:48            | 0:00:08   | 0:05:04    |  |  |  |  |
| 144 | 8:06:11 AM                | 8:10:48            | 8:11:01            | 0:00:13   | 0:04:50    |  |  |  |  |
| 145 | 8:06:55 AM                | 8:11:08            | 8:11:15            | 0:00:07   | 0:04:20    |  |  |  |  |
| 146 | 8:07:15 AM                | 8:11:00            | 8:11:09            | 0:00:09   | 0:03:54    |  |  |  |  |
| 147 | 8:07:30 AM                | 8:11:10            | 8:11:15            | 0:00:05   | 0:03:45    |  |  |  |  |
| 148 | 8:07:48 AM                | 8:11:21            | 8:11:29            | 0:00:08   | 0:03:41    |  |  |  |  |
| 150 | 0.08:15 AIVI              | 8:11:30<br>8:11:40 | 8:11:39<br>8·11·51 | 0:00:09   | 0:03:24    |  |  |  |  |
| 151 | 8:08:52 AM                | 8.11.42            | 8.11.51            | 0.00.09   | 0.03.22    |  |  |  |  |
| 152 | 8:09:15 AM                | 8:12:00            | 8:12:12            | 0:00:12   | 0:02:57    |  |  |  |  |
| 153 | 8:09:44 AM                | 8:12:02            | 8:12:16            | 0:00:14   | 0:02:32    |  |  |  |  |
|     |                           |                    | Average            | 0:00:16   | 0:02:58    |  |  |  |  |

| PM Queue | Analysis |            |          |           |                 |            |
|----------|----------|------------|----------|-----------|-----------------|------------|
|          | In       | Start Load | End Load | Load Time | Time From Start | Total Time |
| 1        | 1:01:24  | 2:41:08    | 2:41:35  | 0:00:27   | 0:02:08         | 1:40:11    |
| 2        | 1:26:55  | 2:41:12    | 2:41:23  | 0:00:11   | 0:01:56         | 1:14:28    |
| 3        | 1:28:33  | 2:39:27    | 2:40     | 0:00:33   | 0:00:33         | 1:11:27    |
| 4        | 1:36:04  | 2:40:10    | 2:40:28  | 0:00:18   | 0:01:01         | 1:04:24    |
| 5        | 1:38:40  | 2:41:00    | 2:41:28  | 0:00:28   | 0:02:01         | 1:02:48    |
| 6        | 1:45:53  | 2:41:50    | 2:44:10  | 0:02:20   | 0:04:43         | 0:58:17    |
| 7        | 1:49:48  | 2:41:43    | 2:42:14  | 0:00:31   | 0:02:47         | 0:52:26    |
| 8        | 1:51:46  | 2:43:44    | 2:44:13  | 0:00:29   | 0:04:46         | 0:52:27    |
| 9        | 1:53:11  | 2:42:24    | 2:42:57  | 0:00:33   | 0:03:30         | 0:49:46    |
| 10       | 1:56:45  | 2:42:35    | 2:43:05  | 0:00:30   | 0:03:38         | 0:46:20    |
| 11       | 2:00:32  | 2:43:13    | 2:43:30  | 0:00:17   | 0:04:03         | 0:42:58    |
| 12       | 2:06:45  | 2:43:40    | 2:44:04  | 0:00:24   | 0:04:37         | 0:37:19    |
| 13       | 2:07:03  | 2:44:23    | 2:45:00  | 0:00:43   | 0:05:39         | 0:38:03    |
| 14       | 2:10:16  | 2.44.10    | 2.44.59  | 0.00.21   | 0.05.12         | 0.34.21    |
| 15       | 2:10:25  | 2.45.11    | 2.45.40  | 0.00.29   | 0.00.13         | 0.35.15    |
| 10       | 2:11:00  | 2:40:28    | 2:47.10  | 0:00:48   | 0:07:49         | 0:33:56    |
| 10       | 2.11.20  | 2:44.38    | 2:45:10  | 0.00.18   | 0.03.43         | 0.33.30    |
| 10       | 2.11.43  | 2:45:10    | 2:45:43  | 0:00:33   | 0:06:36         | 0.34.00    |
| 20       | 2:12:45  | 2:45:32    | 2:46:56  | 0:00:31   | 0:00:30         | 0:33:31    |
| 20       | 2:13:25  | 2:40:17    | 2:40:50  | 0:00:18   | 0:07:25         | 0:34:05    |
| 21       | 2.13.20  | 2:47:08    | 2:47:47  | 0.00.18   | 0.08.00         | 0.34.03    |
| 22       | 2:13:50  | 2:47:16    | 2:47:49  | 0:00:33   | 0:08:20         | 0:33:42    |
| 23       | 2:14:19  | 2:47:39    | 2:47:54  | 0:00:15   | 0:08:22         | 0:33:35    |
| 25       | 2:14:29  | 2:47:33    | 2:47:59  | 0:00:15   | 0:08:32         | 0:33:30    |
| 26       | 2:14:46  | 2:48:37    | 2:49:17  | 0:00:40   | 0:09:50         | 0:34:31    |
| 27       | 2:15:04  | 2:48:23    | 2:49:22  | 0:00:59   | 0:09:55         | 0:34:18    |
| 28       | 2:16:15  | 2:48:35    | 2:49:26  | 0:00:51   | 0:09:59         | 0:33:11    |
| 29       | 2:16:32  | 2:48:52    | 2:49:11  | 0:00:19   | 0:09:44         | 0:32:39    |
| 30       | 2:16:47  | 2:49:01    | 2:49:30  | 0:00:29   | 0:10:03         | 0:32:43    |
| 31       | 2:17:53  | 2:50:23    | 2:50:50  | 0:00:27   | 0:11:23         | 0:32:57    |
| 32       | 2:18:25  | 2:49:30    | 2:50:03  | 0:00:33   | 0:10:36         | 0:31:38    |
| 33       | 2:20:30  | 2:50:09    | 2:50:29  | 0:00:20   | 0:11:02         | 0:29:59    |
| 34       | 2:22:07  | 2:50:12    | 2:50:32  | 0:00:20   | 0:11:05         | 0:28:25    |
| 35       | 2:22:20  | 2:50:58    | 2:51:10  | 0:00:12   | 0:11:43         | 0:28:50    |
| 36       | 2:22:30  | 2:50:35    | 2:52:24  | 0:01:49   | 0:12:57         | 0:29:54    |
| 37       | 2:23:40  | 2:51:17    | 2:52:00  | 0:00:43   | 0:12:33         | 0:28:20    |
| 38       | 2:24:25  | 2:51:37    | 2:52:03  | 0:00:26   | 0:12:36         | 0:27:38    |
| 39       | 2:24:30  | 2:51:42    | 2:52:12  | 0:00:30   | 0:12:45         | 0:27:42    |
| 40       | 2:25:10  | 2:52:11    | 2:52:50  | 0:00:39   | 0:13:23         | 0:27:40    |
| 41       | 2:26:17  | 2:52:57    | 2:53:18  | 0:00:21   | 0:13:51         | 0:27:01    |
| 42       | 2:26:20  | 2:53:06    | 2:53:25  | 0:00:19   | 0:13:58         | 0:27:05    |
| *43      | 2:26:27  | 2:53:10    | 2:53:42  | 0:00:32   | 0:14:15         | 0:27:15    |
| 44       | 2:28:00  | 2:53:15    | 2:53:44  | 0:00:29   | 0:14:17         | 0:25:44    |
| 45       | 2:29:32  | 2:53:25    | 2:53:47  | 0:00:22   | 0:14:20         | 0:24:15    |
| 46       | 2:29:37  | 2:53:57    | 2:54:14  | 0:00:17   | 0:14:47         | 0:24:37    |
| 47       | 2:31:50  | 2:54:04    | 2:54:23  | 0:00:19   | 0:14:56         | 0:22:33    |
| 48       | 2:33:15  | 2:54:04    | 2:54:26  | 0:00:22   | 0:14:59         | 0:21:11    |
| 49       | 2:33:27  | 2:54:30    | 2:55:12  | 0:00:42   | 0:15:45         | 0:21:45    |
| 50       | 2.34.10  | 2.34.20    | 2.34.40  | 0.00.20   | 0.15.13         | 0.20.30    |
| 51       | 2.34.31  | 2.34.38    | 2.33.10  | 0.00.32   | 0.15.43         | 0.20.19    |
| 52       | 2:33:48  | 2.55.10    | 2:55:41  | 0.00.31   | 0.16.14         | 0.13.33    |
| 54       | 2.44.49  | 2:55:56    | 2:56:28  | 0.00.24   | 0.10.17         | 0.11.30    |
| 54       | 2:45:25  | 2:55:59    | 2:56:41  | 0:00:32   | 0.17.14         | 0:11:35    |
| 56       | 2:46:05  | 2:56:08    | 2:58:12  | 0:02:04   | 0:18:45         | 0:12:07    |
| 57       | 2:46:40  | 2:56:54    | 2:58:15  | 0:01:21   | 0:18:48         | 0:11:35    |
| 58       | 2:48:07  | 2:56:58    | 2:57:58  | 0:01:00   | 0:18:31         | 0:09:51    |
| 59       | 2:48:29  | 2:56:54    | 2:57:24  | 0:00:30   | 0:17:57         | 0:08:55    |
| 60       | 2:49:13  | 2:57:35    | 2:58:08  | 0:00:33   | 0:18:41         | 0:08:55    |
| 61       | 2:50:01  | 2:58:00    | 2:58:27  | 0:00:27   | 0:19:00         | 0:08:26    |
| 62       | 2:52:00  | 2:58:02    | 2:58:39  | 0:00:37   | 0:19:12         | 0:06:39    |
| 63       | 2:52:48  | 2:58:53    | 2:59:13  | 0:00:20   | 0:19:46         | 0:06:25    |
| 64       | 2:54:05  | 2:58:50    | 2:59:17  | 0:00:27   | 0:19:50         | 0:05:12    |
| 65       | 2:54:44  | 2:58:56    | 2:59:20  | 0:00:24   | 0:19:53         | 0:04:36    |
| 66       | 2:55:35  | 2:59:06    | 2:59:35  | 0:00:29   | 0:20:08         | 0:04:00    |
| 67       | 2:56:06  | 2:59:26    | 2:59:46  | 0:00:20   | 0:20:19         | 0:03:40    |
| 68       | 2:56:46  | 2:59:53    | 3:00:20  | 0:00:27   | 0:20:53         | 0:03:34    |
| 69       | 2:57:38  | 2:59:53    | 3:00:08  | 0:00:15   | 0:20:41         | 0:02:30    |
| 70       | 2:57:41  | 3:00:14    | 3:00:35  | 0:00:21   | 0:21:08         | 0:02:54    |
| 71       | 2:58:02  | 3:00:14    | 3:00:40  | 0:00:26   | 0:21:13         | 0:02:38    |

| Average   | Average Time in Queue From | Average Time |
|-----------|----------------------------|--------------|
| Load Time | Start of PU/DO             | in Queue     |
| 0:00:33   | 0:11:51                    | 0:28:44      |

TRAFFIC COUNT DATA

# Study Name01 Landwehr & North Winkelman AccessDateTuesday, January 08, 2019

|                   |                    | Eastbound |      |    |    |      |      |    |     | Westbound |     |     |     |    |    |     | Northbound |     |     |    |     |     | Southbound |     |     |       |   |     | Crosswalk   |       |
|-------------------|--------------------|-----------|------|----|----|------|------|----|-----|-----------|-----|-----|-----|----|----|-----|------------|-----|-----|----|-----|-----|------------|-----|-----|-------|---|-----|-------------|-------|
| Time Period       | Class.             |           |      |    | R  |      | 0    |    |     |           | R   |     | 0   |    |    |     | R          |     | 0   |    |     |     | R          |     | 0   | Total |   | BOC | Pedestrians | Total |
| AM Peak           | Lights             | 0         | 0    | 0  | 0  | 0    | 0    | 0  | 5   | 0         | 45  | 50  | 90  | 0  | 0  | 495 | 14         | 509 | 700 | 0  | 76  | 695 | 0          | 771 | 540 | 1330  | w | 0   | 0           | 0     |
| Specified Period  | %                  | 0%        | 0%   | 0% | 0% | 0%   | 0%   | 0% | 71% | 0%        | 90% | 88% | 93% | 0% | 0% | 97% | 93%        | 97% | 99% | 0% | 93% | 99% | 0%         | 98% | 96% | 97%   |   | 0%  | 0%          |       |
| 7:00 AM - 4:00 PM | Buses              | 0         | 0    | 0  | 0  | 0    | 0    | 0  | 2   | 0         | 5   | 7   | 7   | 0  | 0  | 2   | 1          | 3   | 4   | 0  | 6   | 2   | 0          | 8   | 7   | 18    | Е | 0   | 6           | 6     |
| One Hour Peak     | %                  | 0%        | 0%   | 0% | 0% | 0%   | 0%   | 0% | 29% | 0%        | 10% | 12% | 7%  | 0% | 0% | 0%  | 7%         | 1%  | 1%  | 0% | 7%  | 0%  | 0%         | 1%  | 1%  | 1%    |   | 0%  | 100%        |       |
| 7:15 AM - 8:15 AM | Single-Unit Trucks | 0         | 0    | 0  | 0  | 0    | 0    | 0  | 0   | 0         | 0   | 0   | 0   | 0  | 0  | 14  | 0          | 14  | 2   | 0  | 0   | 2   | 0          | 2   | 14  | 16    | S | 0   | 0           | 0     |
|                   | %                  | 0%        | 0%   | 0% | 0% | 0%   | 0%   | 0% | 0%  | 0%        | 0%  | 0%  | 0%  | 0% | 0% | 3%  | 0%         | 3%  | 0%  | 0% | 0%  | 0%  | 0%         | 0%  | 2%  | 1%    |   | 0%  | 0%          |       |
|                   | Articulated Trucks | 0         | 0    | 0  | 0  | 0    | 0    | 0  | 0   | 0         | 0   | 0   | 0   | 0  | 0  | 0   | 0          | 0   | 3   | 0  | 0   | 3   | 0          | 3   | 0   | 3     | Ν | 0   | 0           | 0     |
|                   | %                  | 0%        | 0%   | 0% | 0% | 0%   | 0%   | 0% | 0%  | 0%        | 0%  | 0%  | 0%  | 0% | 0% | 0%  | 0%         | 0%  | 0%  | 0% | 0%  | 0%  | 0%         | 0%  | 0%  | 0%    |   | 0%  | 0%          |       |
|                   | Total              | 0         | 0    | 0  | 0  | 0    | 0    | 0  | 7   | 0         | 50  | 57  | 97  | 0  | 0  | 511 | 15         | 526 | 709 | 0  | 82  | 702 | 0          | 784 | 561 | 1367  |   | 0   | 6           | 6     |
|                   | PHF                |           |      |    |    |      |      |    |     |           |     |     |     |    |    |     |            |     |     |    |     |     |            |     |     | 0.85  |   |     |             |       |
|                   | HV %               | 0%        | 0%   | 0% | 0% | 0%   | 0%   | 0% | 29% | 0%        | 10% | 12% | 7%  | 0% | 0% | 3%  | 7%         | 3%  | 1%  | 0% | 7%  | 1%  | 0%         | 2%  | 4%  | 3%    |   |     |             |       |
|                   | Bicycles on Road   | 0         | 0    | 0  | 0  | 0    | 0    | 0  | 0   | 0         | 0   | 0   | 0   | 0  | 0  | 0   | 0          | 0   | 0   | 0  | 0   | 0   | 0          | 0   | 0   | 0     |   |     |             |       |
| PM Peak           | Lights             | 0         | 1    | 0  | 0  | 1    | 2    | 0  | 32  | 0         | 66  | 98  | 32  | 0  | 0  | 488 | 9          | 497 | 447 | 0  | 23  | 415 | 2          | 440 | 555 | 1036  | w | 0   | 2           | 2     |
| Specified Period  | %                  | 0%        | 100% | 0% | 0% | 100% | 100% | 0% | 89% | 0%        | 92% | 91% | 97% | 0% | 0% | 97% | 100%       | 97% | 97% | 0% | 96% | 97% | 100%       | 97% | 97% | 97%   |   | 0%  | 100%        |       |
| 7:00 AM - 4:00 PM | Buses              | 0         | 0    | 0  | 0  | 0    | 0    | 0  | 4   | 0         | 6   | 10  | 1   | 0  | 0  | 6   | 0          | 6   | 12  | 0  | 1   | 8   | 0          | 9   | 12  | 25    | Е | 0   | 5           | 5     |
| One Hour Peak     | %                  | 0%        | 0%   | 0% | 0% | 0%   | 0%   | 0% | 11% | 0%        | 8%  | 9%  | 3%  | 0% | 0% | 1%  | 0%         | 1%  | 3%  | 0% | 4%  | 2%  | 0%         | 2%  | 2%  | 2%    |   | 0%  | 100%        |       |
| 2:30 PM - 3:30 PM | Single-Unit Trucks | 0         | 0    | 0  | 0  | 0    | 0    | 0  | 0   | 0         | 0   | 0   | 0   | 0  | 0  | 6   | 0          | 6   | 2   | 0  | 0   | 2   | 0          | 2   | 6   | 8     | S | 0   | 0           | 0     |
|                   | - %                | 0%        | 0%   | 0% | 0% | 0%   | 0%   | 0% | 0%  | 0%        | 0%  | 0%  | 0%  | 0% | 0% | 1%  | 0%         | 1%  | 0%  | 0% | 0%  | 0%  | 0%         | 0%  | 1%  | 1%    |   | 0%  | 0%          |       |
|                   | Articulated Trucks | 0         | 0    | 0  | 0  | 0    | 0    | 0  | 0   | 0         | 0   | 0   | 0   | 0  | 0  | 1   | 0          | 1   | 1   | 0  | 0   | 1   | 0          | 1   | 1   | 2     | Ν | 0   | 0           | 0     |
|                   | %                  | 0%        | 0%   | 0% | 0% | 0%   | 0%   | 0% | 0%  | 0%        | 0%  | 0%  | 0%  | 0% | 0% | 0%  | 0%         | 0%  | 0%  | 0% | 0%  | 0%  | 0%         | 0%  | 0%  | 0%    |   | 0%  | 0%          |       |
|                   | Bicycles on Road   | 0         | 0    | 0  | 0  | 0    | 0    | 0  | 0   | 0         | 0   | 0   | 0   | 0  | 0  | 0   | 0          | 0   | 0   | 0  | 0   | 0   | 0          | 0   | 0   | 0     |   | 0   | 7           | 7     |
|                   | %                  | 0%        | 0%   | 0% | 0% | 0%   | 0%   | 0% | 0%  | 0%        | 0%  | 0%  | 0%  | 0% | 0% | 0%  | 0%         | 0%  | 0%  | 0% | 0%  | 0%  | 0%         | 0%  | 0%  | 0%    |   |     |             |       |
|                   | Total              | 0         | 1    | 0  | 0  | 1    | 2    | 0  | 36  | 0         | 72  | 108 | 33  | 0  | 0  | 501 | 9          | 510 | 462 | 0  | 24  | 426 | 2          | 452 | 574 | 1071  |   |     |             |       |
|                   | PHF                |           |      |    |    |      |      |    |     |           |     |     |     |    |    |     |            |     |     |    |     |     |            |     |     | 0.96  |   |     |             |       |
|                   | HV %               | 0%        | 0%   | 0% | 0% | 0%   | 0%   | 0% | 0%  | 0%        | 0%  | 0%  | 0%  | 0% | 0% | 1%  | 0%         | 1%  | 1%  | 0% | 0%  | 1%  | 0%         | 1%  | 1%  | 1%    |   |     |             |       |
|                   |                    |           |      |    |    |      |      |    |     |           |     |     |     |    |    |     |            |     |     |    |     |     |            |     |     |       |   |     |             |       |

### Study Name 02 Landwehr & South Winkelman Access

Date Tuesday, January 08, 2019

|                   |                    |    | W   | estbou | nd  |      | Northbound |     |      |     |     |    | So   | uthbou | ind |     |       |   |     | Crosswalk   |       |
|-------------------|--------------------|----|-----|--------|-----|------|------------|-----|------|-----|-----|----|------|--------|-----|-----|-------|---|-----|-------------|-------|
| Time Period       | Class.             | U  | L   | R      | I   | 0    | U          | т   | R    | I   | 0   | U  | L    | Т      | I   | 0   | Total |   | BOC | Pedestrians | Total |
| AM Peak           | Lights             | 0  | 91  | 83     | 174 | 222  | 0          | 424 | 138  | 562 | 707 | 0  | 84   | 616    | 700 | 507 | 1436  | Е | 0   | 1           | 1     |
| Specified Period  | %                  | 0% | 99% | 100%   | 99% | 100% | 0%         | 96% | 100% | 97% | 99% | 0% | 100% | 99%    | 99% | 97% | 98%   |   | 0%  | 100%        |       |
| 7:00 AM - 4:00 PM | Buses              | 0  | 1   | 0      | 1   | 0    | 0          | 3   | 0    | 3   | 5   | 0  | 0    | 4      | 4   | 3   | 8     | S | 0   | 0           | 0     |
| One Hour Peak     | %                  | 0% | 1%  | 0%     | 1%  | 0%   | 0%         | 1%  | 0%   | 1%  | 1%  | 0% | 0%   | 1%     | 1%  | 1%  | 1%    |   | 0%  | 0%          |       |
| 7:15 AM - 8:15 AM | Single-Unit Trucks | 0  | 0   | 0      | 0   | 0    | 0          | 13  | 0    | 13  | 2   | 0  | 0    | 2      | 2   | 13  | 15    | Ν | 0   | 0           | 0     |
|                   | %                  | 0% | 0%  | 0%     | 0%  | 0%   | 0%         | 3%  | 0%   | 2%  | 0%  | 0% | 0%   | 0%     | 0%  | 2%  | 1%    |   | 0%  | 0%          |       |
|                   | Articulated Trucks | 0  | 0   | 0      | 0   | 0    | 0          | 0   | 0    | 0   | 3   | 0  | 0    | 3      | 3   | 0   | 3     |   | 0   | 1           | 1     |
|                   | %                  | 0% | 0%  | 0%     | 0%  | 0%   | 0%         | 0%  | 0%   | 0%  | 0%  | 0% | 0%   | 0%     | 0%  | 0%  | 0%    |   |     |             |       |
|                   | Total              | 0  | 92  | 83     | 175 | 222  | 0          | 440 | 138  | 578 | 717 | 0  | 84   | 625    | 709 | 523 | 1462  |   |     |             |       |
|                   | PHF                |    |     |        |     |      |            |     |      |     |     |    |      |        |     |     | 0.83  |   |     |             |       |
|                   | HV%                | 0% | 1%  | 0%     | 1%  | 0%   | 0%         | 4%  | 0%   | 3%  | 1%  | 0% | 0%   | 1%     | 1%  | 3%  | 2%    |   |     |             |       |
|                   | Bicycles on Road   | 0  | 0   | 0      | 0   | 0    | 0          | 0   | 0    | 0   | 0   | 0  | 0    | 0      | 0   | 0   | 0     |   |     |             |       |
| PM Peak           | Lights             | 0  | 71  | 62     | 133 | 47   | 0          | 425 | 39   | 464 | 505 | 0  | 8    | 434    | 442 | 487 | 1039  | Е | 0   | 2           | 2     |
| Specified Period  | %                  | 0% | 97% | 98%    | 98% | 98%  | 0%         | 97% | 98%  | 97% | 97% | 0% | 100% | 97%    | 97% | 97% | 97%   |   | 0%  | 100%        |       |
| 7:00 AM - 4:00 PM | Buses              | 0  | 2   | 1      | 3   | 1    | 0          | 5   | 1    | 6   | 13  | 0  | 0    | 11     | 11  | 6   | 20    | S | 0   | 0           | 0     |
| One Hour Peak     | %                  | 0% | 3%  | 2%     | 2%  | 2%   | 0%         | 1%  | 3%   | 1%  | 2%  | 0% | 0%   | 2%     | 2%  | 1%  | 2%    |   | 0%  | 0%          |       |
| 2:30 PM - 3:30 PM | Single-Unit Trucks | 0  | 0   | 0      | 0   | 0    | 0          | 6   | 0    | 6   | 2   | 0  | 0    | 2      | 2   | 6   | 8     | Ν | 0   | 9           | 9     |
|                   | %                  | 0% | 0%  | 0%     | 0%  | 0%   | 0%         | 1%  | 0%   | 1%  | 0%  | 0% | 0%   | 0%     | 0%  | 1%  | 1%    |   | 0%  | 100%        |       |
|                   | Articulated Trucks | 0  | 0   | 0      | 0   | 0    | 0          | 1   | 0    | 1   | 1   | 0  | 0    | 1      | 1   | 1   | 2     |   | 0   | 11          | 11    |
|                   | %                  | 0% | 0%  | 0%     | 0%  | 0%   | 0%         | 0%  | 0%   | 0%  | 0%  | 0% | 0%   | 0%     | 0%  | 0%  | 0%    |   |     |             |       |
|                   | Total              | 0  | 73  | 63     | 136 | 48   | 0          | 437 | 40   | 477 | 521 | 0  | 8    | 448    | 456 | 500 | 1069  |   |     |             |       |
|                   | PHF                |    |     |        |     |      |            |     |      |     |     |    |      |        |     |     | 0.91  |   |     |             |       |
|                   | HV%                | 0% | 3%  | 2%     | 2%  | 2%   | 0%         | 3%  | 3%   | 3%  | 3%  | 0% | 0%   | 3%     | 3%  | 3%  | 3%    |   |     |             |       |
|                   | Bicycles on Road   | 0  | 0   | 0      | 0   | 0    | 0          | 0   | 0    | 0   | 0   | 0  | 0    | 0      | 0   | 0   | 0     |   |     |             |       |

# Study Name03 South Winkelman Access & Lot A South AccessDateTuesday, January 08, 2019

|                   |                    |    | E    | astbour | nd   |     | Westbound |      |      |      |      |    | So   | outhbou | nd   |      | Crosswalk |   |     |             |       |
|-------------------|--------------------|----|------|---------|------|-----|-----------|------|------|------|------|----|------|---------|------|------|-----------|---|-----|-------------|-------|
| Time Period       | Class.             | U  | L    | Т       | I    | 0   | U         | т    | R    | I    | 0    | U  | L    | R       | I    | 0    | Total     |   | BOC | Pedestrians | Total |
| AM Peak           | Lights             | 0  | 63   | 158     | 221  | 174 | 0         | 157  | 1    | 158  | 160  | 0  | 2    | 17      | 19   | 64   | 398       | W | 0   | 0           | 0     |
| Specified Period  | %                  | 0% | 100% | 100%    | 100% | 99% | 0%        | 100% | 100% | 100% | 100% | 0% | 100% | 94%     | 95%  | 100% | 100%      |   | 0%  | 0%          |       |
| 7:00 AM - 4:00 PM | Buses              | 0  | 0    | 0       | 0    | 1   | 0         | 0    | 0    | 0    | 0    | 0  | 0    | 1       | 1    | 0    | 1         | Е | 0   | 0           | 0     |
| One Hour Peak     | %                  | 0% | 0%   | 0%      | 0%   | 1%  | 0%        | 0%   | 0%   | 0%   | 0%   | 0% | 0%   | 6%      | 5%   | 0%   | 0%        |   | 0%  | 0%          |       |
| 7:15 AM - 8:15 AM | Single-Unit Trucks | 0  | 0    | 0       | 0    | 0   | 0         | 0    | 0    | 0    | 0    | 0  | 0    | 0       | 0    | 0    | 0         | Ν | 0   | 0           | 0     |
|                   | %                  | 0% | 0%   | 0%      | 0%   | 0%  | 0%        | 0%   | 0%   | 0%   | 0%   | 0% | 0%   | 0%      | 0%   | 0%   | 0%        |   | 0%  | 0%          |       |
|                   | Articulated Trucks | 0  | 0    | 0       | 0    | 0   | 0         | 0    | 0    | 0    | 0    | 0  | 0    | 0       | 0    | 0    | 0         |   | 0   | 0           | 0     |
|                   | %                  | 0% | 0%   | 0%      | 0%   | 0%  | 0%        | 0%   | 0%   | 0%   | 0%   | 0% | 0%   | 0%      | 0%   | 0%   | 0%        |   |     |             |       |
|                   | Total              | 0  | 63   | 158     | 221  | 175 | 0         | 157  | 1    | 158  | 160  | 0  | 2    | 18      | 20   | 64   | 399       |   |     |             |       |
|                   | PHF                |    |      |         |      |     |           |      |      |      |      |    |      |         |      |      | 0.52      |   |     |             |       |
|                   | HV%                | 0% | 0%   | 0%      | 0%   | 1%  | 0%        | 0%   | 0%   | 0%   | 0%   | 0% | 0%   | 6%      | 5%   | 0%   | 0%        |   |     |             |       |
|                   |                    |    |      |         |      |     |           |      |      |      |      |    |      |         |      |      |           |   |     |             |       |
|                   | Bicycles on Road   | 0  | 0    | 0       | 0    | 0   | 0         | 0    | 0    | 0    | 0    | 0  | 0    | 0       | 0    | 0    | 0         |   |     |             |       |
| PM Peak           | Lights             | 0  | 9    | 43      | 52   | 133 | 0         | 77   | 2    | 79   | 43   | 0  | 0    | 56      | 56   | 11   | 187       | w | 0   | 0           | 0     |
| Specified Period  | 2.gco              | 0% | 100% | 98%     | 98%  | 98% | 0%        | 96%  | 100% | 96%  | 98%  | 0% | 0%   | 100%    | 100% | 100% | 98%       |   | 0%  | 0%          | Ũ     |
| 7:00 AM - 4:00 PM | Buses              | 0  | 0    | 1       | 1    | 3   | 0         | 3    | 0    | 3    | 1    | 0  | 0    | 0       | 0    | 0    | 4         | Е | 0   | 0           | 0     |
| One Hour Peak     | %                  | 0% | 0%   | 2%      | 2%   | 2%  | 0%        | 4%   | 0%   | 4%   | 2%   | 0% | 0%   | 0%      | 0%   | 0%   | 2%        |   | 0%  | 0%          |       |
| 2:30 PM - 3:30 PM | Single-Unit Trucks | 0  | 0    | 0       | 0    | 0   | 0         | 0    | 0    | 0    | 0    | 0  | 0    | 0       | 0    | 0    | 0         | N | 0   | 9           | 9     |
|                   | %                  | 0% | 0%   | 0%      | 0%   | 0%  | 0%        | 0%   | 0%   | 0%   | 0%   | 0% | 0%   | 0%      | 0%   | 0%   | 0%        |   | 0%  | 100%        |       |
|                   | Articulated Trucks | 0  | 0    | 0       | 0    | 0   | 0         | 0    | 0    | 0    | 0    | 0  | 0    | 0       | 0    | 0    | 0         |   | 0   | 9           | 9     |
|                   | %                  | 0% | 0%   | 0%      | 0%   | 0%  | 0%        | 0%   | 0%   | 0%   | 0%   | 0% | 0%   | 0%      | 0%   | 0%   | 0%        |   |     |             |       |
|                   | Total              | 0  | 9    | 44      | 53   | 136 | o         | 80   | 2    | 82   | 44   | 0  | 0    | 56      | 56   | 11   | 191       |   |     |             |       |
|                   | PHF                |    |      |         |      |     |           |      |      |      |      |    |      |         |      |      | 0.45      |   |     |             |       |
|                   | HV%                | 0% | 0%   | 2%      | 2%   | 2%  | 0%        | 4%   | 0%   | 4%   | 2%   | 0% | 0%   | 0%      | 0%   | 0%   | 2%        |   |     |             |       |
|                   |                    |    |      |         |      |     |           |      |      |      |      |    |      |         |      |      |           |   |     |             |       |
|                   | Bicycles on Road   | 0  | 0    | 0       | 0    | 0   | 0         | 0    | 0    | 0    | 0    | 0  | 0    | 0       | 0    | 0    | 0         |   |     |             |       |
|                   |                    |    |      |         |      |     |           |      |      |      |      |    |      |         |      |      |           |   |     |             |       |
|                   |                    |    |      |         |      |     |           |      |      |      |      |    |      |         |      |      |           |   |     |             |       |

# Study Name04 North Winkelman Access & Lot A North AccessDateTuesday, January 08, 2019

|                   |                    |    | E   | astbour | nd  |     | Westbound |      |     |     |     |    | N    | orthbou | nd   |      | Crosswalk |   |     |             |       |
|-------------------|--------------------|----|-----|---------|-----|-----|-----------|------|-----|-----|-----|----|------|---------|------|------|-----------|---|-----|-------------|-------|
| Time Period       | Class.             | U  | Т   | R       | I   | Ο   | U         | L    | Т   | I   | 0   | U  | L    | R       | I    | 0    | Total     |   | BOC | Pedestrians | Total |
| AM Peak           | Lights             | 0  | 26  | 65      | 91  | 49  | 0         | 0    | 11  | 11  | 27  | 0  | 38   | 1       | 39   | 65   | 141       | W | 0   | 0           | 0     |
| Specified Period  | %                  | 0% | 79% | 100%    | 93% | 88% | 0%        | 0%   | 61% | 61% | 79% | 0% | 100% | 100%    | 100% | 100% | 91%       |   | 0%  | 0%          |       |
| 7:00 AM - 4:00 PM | Buses              | 0  | 7   | 0       | 7   | 7   | 0         | 0    | 7   | 7   | 7   | 0  | 0    | 0       | 0    | 0    | 14        | Е | 0   | 0           | 0     |
| One Hour Peak     | %                  | 0% | 21% | 0%      | 7%  | 13% | 0%        | 0%   | 39% | 39% | 21% | 0% | 0%   | 0%      | 0%   | 0%   | 9%        |   | 0%  | 0%          |       |
| 7:15 AM - 8:15 AM | Single-Unit Trucks | 0  | 0   | 0       | 0   | 0   | 0         | 0    | 0   | 0   | 0   | 0  | 0    | 0       | 0    | 0    | 0         | S | 0   | 5           | 5     |
|                   | %                  | 0% | 0%  | 0%      | 0%  | 0%  | 0%        | 0%   | 0%  | 0%  | 0%  | 0% | 0%   | 0%      | 0%   | 0%   | 0%        |   | 0%  | 100%        |       |
|                   | Articulated Trucks | 0  | 0   | 0       | 0   | 0   | 0         | 0    | 0   | 0   | 0   | 0  | 0    | 0       | 0    | 0    | 0         |   | 0   | 5           | 5     |
|                   | %                  | 0% | 0%  | 0%      | 0%  | 0%  | 0%        | 0%   | 0%  | 0%  | 0%  | 0% | 0%   | 0%      | 0%   | 0%   | 0%        |   |     |             |       |
|                   | Total              | 0  | 33  | 65      | 98  | 56  | 0         | 0    | 18  | 18  | 34  | 0  | 38   | 1       | 39   | 65   | 155       |   |     |             |       |
|                   | PHF                |    |     |         |     |     |           |      |     |     |     |    |      |         |      |      | 0.59      |   |     |             |       |
|                   | HV%                | 0% | 21% | 0%      | 7%  | 13% | 0%        | 0%   | 39% | 39% | 21% | 0% | 0%   | 0%      | 0%   | 0%   | 9%        |   |     |             |       |
|                   | Bicycles on Road   | 0  | 0   | 0       | 0   | 0   | 0         | 0    | 0   | 0   | 0   | 0  | 0    | 0       | 0    | 0    | 0         |   |     |             |       |
| PM Peak           | Lights             | 0  | 13  | 26      | 39  | 92  | 0         | 4    | 35  | 39  | 13  | 0  | 57   | 0       | 57   | 30   | 135       | W | 0   | 11          | 11    |
| Specified Period  | %                  | 0% | 81% | 100%    | 93% | 90% | 0%        | 100% | 80% | 81% | 81% | 0% | 98%  | 0%      | 98%  | 100% | 91%       |   | 0%  | 100%        |       |
| 7:00 AM - 4:00 PM | Buses              | 0  | 3   | 0       | 3   | 10  | 0         | 0    | 9   | 9   | 3   | 0  | 1    | 0       | 1    | 0    | 13        | Е | 0   | 7           | 7     |
| One Hour Peak     | %                  | 0% | 19% | 0%      | 7%  | 10% | 0%        | 0%   | 20% | 19% | 19% | 0% | 2%   | 0%      | 2%   | 0%   | 9%        |   | 0%  | 100%        |       |
| 2:30 PM - 3:30 PM | Single-Unit Trucks | 0  | 0   | 0       | 0   | 0   | 0         | 0    | 0   | 0   | 0   | 0  | 0    | 0       | 0    | 0    | 0         | S | 0   | 17          | 17    |
|                   | %                  | 0% | 0%  | 0%      | 0%  | 0%  | 0%        | 0%   | 0%  | 0%  | 0%  | 0% | 0%   | 0%      | 0%   | 0%   | 0%        |   | 0%  | 100%        |       |
|                   | Articulated Trucks | 0  | 0   | 0       | 0   | 0   | 0         | 0    | 0   | 0   | 0   | 0  | 0    | 0       | 0    | 0    | 0         |   | 0   | 35          | 35    |
|                   | %                  | 0% | 0%  | 0%      | 0%  | 0%  | 0%        | 0%   | 0%  | 0%  | 0%  | 0% | 0%   | 0%      | 0%   | 0%   | 0%        |   |     |             |       |
|                   | Total              | 0  | 16  | 26      | 42  | 102 | 0         | 4    | 44  | 48  | 16  | 0  | 58   | 0       | 58   | 30   | 148       |   |     |             |       |
|                   | PHF                |    |     |         |     |     |           |      |     |     |     |    |      |         |      |      | 0.57      |   |     |             |       |
|                   | HV%                | 0% | 19% | 0%      | 7%  | 10% | 0%        | 0%   | 20% | 19% | 19% | 0% | 2%   | 0%      | 2%   | 0%   | 9%        |   |     |             |       |
|                   | Bicycles on Road   | 0  | 0   | 0       | 0   | 0   | 0         | 0    | 0   | 0   | 0   | 0  | 0    | 0       | 0    | 0    | 0         |   |     |             |       |
|                   |                    |    |     |         |     |     |           |      |     |     |     |    |      |         |      |      |           |   |     |             |       |